Bài 2: Tính
D =\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{29}\)
E = \(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{972}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\\ 2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\\ 2A-A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)\\ A=1-\dfrac{1}{2^9}=\dfrac{511}{512}\)
\(B=\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\\ 3B=\dfrac{3}{4}+\dfrac{3}{12}+\dfrac{3}{36}+\dfrac{3}{108}+\dfrac{3}{324}+\dfrac{3}{972}\\ 3B=\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}\\ 3B-B=\left(\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}\right)-\left(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\right)\\ 2B=\dfrac{3}{4}-\dfrac{1}{972}=\dfrac{182}{243}\\ B=\dfrac{364}{243}\)
\(B=\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\\\)
\(3B=3\left(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\right)\)
\(3B=\dfrac{3}{4}+\dfrac{3}{12}+\dfrac{3}{36}+\dfrac{3}{108}+\dfrac{3}{324}+\dfrac{3}{972}\)
\(3B=\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}\)
\(2B=3B-B\)
\(2B=\left(\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}\right)-\left(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\right)\)
\(2B=\dfrac{3}{4}-\dfrac{1}{972}=\dfrac{729-1}{972}=\dfrac{728}{972}=\dfrac{182}{243}\)
\(B=\dfrac{182}{243}:\dfrac{1}{2}=\dfrac{182\cdot2}{243}=\dfrac{364}{243}\)
a) Ta có: \(\dfrac{1}{7}+x=-\dfrac{2}{3}\)
\(\Leftrightarrow x=-\dfrac{2}{3}-\dfrac{1}{7}=\dfrac{-14}{21}-\dfrac{3}{21}\)
hay \(x=-\dfrac{17}{21}\)
Vậy: \(x=-\dfrac{17}{21}\)
b) Ta có: \(\dfrac{-2}{3}:x=\dfrac{-5}{6}\)
\(\Leftrightarrow x=\dfrac{-2}{3}:\dfrac{-5}{6}=\dfrac{-2}{3}\cdot\dfrac{6}{-5}=\dfrac{-12}{-15}=\dfrac{4}{5}\)
Vậy: \(x=\dfrac{4}{5}\)
c) Ta có: \(\left(\dfrac{3}{5}-2x\right)\cdot\dfrac{5}{8}=1\)
\(\Leftrightarrow\left(\dfrac{3}{5}-2x\right)=1:\dfrac{5}{8}=\dfrac{8}{5}\)
\(\Leftrightarrow-2x=\dfrac{8}{5}-\dfrac{3}{5}=1\)
hay \(x=-\dfrac{1}{2}\)
Vậy: \(x=-\dfrac{1}{2}\)
d) Ta có: \(\dfrac{3}{4}+\dfrac{2}{5}x=\dfrac{29}{60}\)
\(\Leftrightarrow x\cdot\dfrac{2}{5}=\dfrac{29}{60}-\dfrac{3}{4}=\dfrac{29}{60}-\dfrac{45}{60}=\dfrac{-16}{60}=\dfrac{-4}{15}\)
hay \(x=\dfrac{-4}{15}:\dfrac{2}{5}=\dfrac{-4}{15}\cdot\dfrac{5}{2}=\dfrac{-20}{30}=-\dfrac{2}{3}\)
Vậy: \(x=-\dfrac{2}{3}\)
e) Ta có: \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}=\dfrac{8}{20}-\dfrac{15}{20}=\dfrac{-7}{20}\)
hay \(x=-\dfrac{1}{4}:\dfrac{7}{20}=\dfrac{-1}{4}\cdot\dfrac{20}{7}=\dfrac{-20}{28}=\dfrac{-5}{7}\)
Vậy: \(x=-\dfrac{5}{7}\)
f) Ta có: \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\Leftrightarrow-x+\dfrac{11}{12}-\dfrac{2}{5}-\dfrac{2}{3}=0\)
\(\Leftrightarrow-x+\dfrac{55}{60}-\dfrac{24}{60}-\dfrac{40}{60}=0\)
\(\Leftrightarrow-x-\dfrac{9}{60}=0\)
\(\Leftrightarrow-x=\dfrac{9}{60}=\dfrac{3}{20}\)
hay \(x=-\dfrac{3}{20}\)
Vậy: \(x=-\dfrac{3}{20}\)
g) Ta có: \(\left|x+\dfrac{1}{3}\right|-4=\dfrac{-1}{2}\)
\(\Leftrightarrow\left|x+\dfrac{1}{3}\right|=\dfrac{-1}{2}+4=\dfrac{-1}{2}+\dfrac{8}{2}=\dfrac{7}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=\dfrac{7}{2}\\x+\dfrac{1}{3}=-\dfrac{7}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}-\dfrac{1}{3}=\dfrac{21}{6}-\dfrac{2}{6}=\dfrac{19}{6}\\x=-\dfrac{7}{2}-\dfrac{1}{3}=\dfrac{-21}{6}-\dfrac{2}{6}=\dfrac{-23}{6}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{19}{6};-\dfrac{23}{6}\right\}\)
A=14+112+136+...+1972+12916
3A=34+14+112+...+1324+1972
3A−A=(34+14+112+...+1324+1972)−(14+112+136+...+1972+12916)
2A=34−12916
A=10932916
b: \(=\dfrac{2}{5}+\dfrac{3}{5}:\dfrac{9-10}{15}-\dfrac{7}{2}\)
\(=\dfrac{4-35}{10}+\dfrac{3}{5}\cdot\dfrac{15}{-1}\)
\(=\dfrac{-31}{10}-9=\dfrac{-31}{10}-\dfrac{90}{10}=-\dfrac{121}{10}\)
c: \(=\dfrac{48-5}{12}\cdot\dfrac{1}{3}+\dfrac{7}{36}=\dfrac{43}{36}+\dfrac{7}{36}=\dfrac{50}{36}=\dfrac{25}{18}\)
d: \(=\dfrac{17}{6}:\dfrac{6}{5}+\dfrac{-7}{12}\)
\(=\dfrac{85}{36}-\dfrac{7}{12}=\dfrac{85}{36}-\dfrac{21}{36}=\dfrac{64}{36}=\dfrac{16}{9}\)
a: =4/5+1/5+2/3+1/3=1+1=2
b: =17/12+7/12+29/7-8/7=3+2=5
c: =3/5+2/5+16/7-1/7-1/7
=1+2=3
d: =2/5+3/5+2/3+1/3+7/4+1/4
=1+1+2
=4
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{18.19.20}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{4}-\dfrac{1}{2.19.20}< \dfrac{1}{4}\)
Cái B TT nhé
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\\ =1-\dfrac{1}{n}< 1\)
D TT
E mk thấy nó ss ớ