K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2018

(a² + b²) / (c² + d²) = ab/cd
<=> (a² + b²)cd = ab(c² + d²)
<=> a²cd + b²cd = abc² + abd²
<=> a²cd - abc² - abd² + b²cd = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> ac - bd = 0 hoặc ad - bc = 0
<=> ac = bd hoặc ad = bc
<=> a/b = d/c hoặc a/b = c/d (đpcm)

23 tháng 3 2023

Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?

3 tháng 1 2018

Ta có :

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)

\(\Leftrightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\)\(\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{ab}{cd}\)

\(\Leftrightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{ab}{cd}\)

\(\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)

24 tháng 10 2021

d: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{3c^2+5a^2}{3d^2+5b^2}=\dfrac{3\cdot\left(dk\right)^2+5\cdot\left(bk\right)^2}{3d^2+5b^2}=k^2\)

\(\dfrac{c^2}{d^2}=\dfrac{\left(dk\right)^2}{d^2}=k^2\)

Do đó: \(\dfrac{3c^2+5a^2}{3d^2+5b^2}=\dfrac{c^2}{d^2}\)

13 tháng 11 2017

ta có \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\Rightarrow ab.\left(c^2+d^2\right)=cd.\left(a^2+b^2\right)\)

suy ra \(ab.\left(c^2+d^2\right)\)=\(abc^2+abd^2=acbc+adbd\) (1)

\(cd\left(a^2+b^2\right)=a^2cd+b^2cd+bcbd\) =acad+bcbd (2)

(1);(2) suy ra acbc+adbd=acad+bcbd

nên bc+ad=bc+ad

suy ra ad=bc nên \(\dfrac{a}{b}=\dfrac{c}{d}\)

21 tháng 7 2018

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right)cd=ab\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd-b^2cd=abc^2+abd^2\)
\(\Leftrightarrow a^2cd-abc^2-abd^2+b^2cd=0\)
\(\Leftrightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)
\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}ac-bd=0\\ad-bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ac=bd\\ad=bc\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{d}{c}\\\dfrac{a}{b}=\dfrac{c}{d}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{d}{c}\\\dfrac{a}{b}=\dfrac{c}{d}\end{matrix}\right.\) (ĐPCM)

a: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)

Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

b: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

DO đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)