\(\dfrac{1}{2!}\)+\(\dfrac{2}{3!}\)+\(\dfrac{3}{4!}\)+.............+\(\dfrac{99}{100!}\)<1
Tính
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(S=\dfrac{1}{2+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)
2:
\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)
\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)
Ta có: \(M=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(1+\dfrac{2}{98}\right)+\left(1+\dfrac{3}{97}\right)+\left(1+\dfrac{4}{96}\right)+...+\left(1+\dfrac{98}{2}\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\dfrac{100}{99}+\dfrac{100}{98}+\dfrac{100}{97}+...+\dfrac{100}{1}+\dfrac{100}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
=100
Ta có: \(N=\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
\(=\dfrac{\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{90}{98}\right)+\left(1-\dfrac{91}{99}\right)+\left(1-\dfrac{92}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{99}+\dfrac{8}{100}}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{8}{\dfrac{1}{5}}=40\)
\(\Leftrightarrow\dfrac{M}{N}=\dfrac{100}{40}=\dfrac{5}{2}\)
Ta có:
\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)
\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{100-1}{100!}\)
\(=\dfrac{2}{2!}-\dfrac{1}{2!}+\dfrac{3}{3!}-\dfrac{1}{3!}+\dfrac{4}{4!}-\dfrac{1}{4!}+...+\dfrac{100}{100!}-\dfrac{1}{100!}\)
\(=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+...+\dfrac{1}{99!}-\dfrac{1}{100!}\)
\(=1-\dfrac{1}{100!}\)
Mà \(1-\dfrac{1}{100!}< 1\)
Vậy \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}< 1\) (Đpcm)
\(\dfrac{1}{2!}\)+ \(\dfrac{2}{3!}\)+ \(\dfrac{3}{4!}\)+...+\(\dfrac{99}{100!}\)
= \((\)\(\dfrac{1}{1!}\)-\(\dfrac{1}{2!}\)\()\) + \((\)\(\dfrac{1}{2!}\)-\(\dfrac{1}{3!}\)\()\) + \((\)\(\dfrac{1}{3!}\)-\(\dfrac{1}{4!}\)\()\) +...+ \((\)\(\dfrac{1}{99!}\)-\(\dfrac{1}{100!}\)\()\)
= 1-\(\dfrac{1}{100!}\) < 1.
M = \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+....+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
3M = \(1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+....+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)
M+3M = \(1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+....+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)
4M < \(1-\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)
Đặt A = \(1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+....+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)
3A = \(3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+......+\dfrac{1}{3^{97}}-\dfrac{1}{3^{98}}\)
A+3A=\(3-\dfrac{1}{3^{99}}\)
4A = \(3-\dfrac{1}{3^{99}}< 3=>A< \dfrac{3}{4}\)
=> 4M < \(\dfrac{3}{4}\) => M < \(\dfrac{3}{16}\) ĐPCM
Đặt :
\(A=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-.............+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
\(3A=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...............+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)
\(3A+A=\left(1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...............+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\right)\)\(+\left(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-...............+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\right)\)
\(4A=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+..............+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)
\(4A< 1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+............+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)
Đặt :
\(B=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...........+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)
\(3B=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+................+\dfrac{1}{3^{97}}-\dfrac{1}{3^{98}}\)
\(3B+B=3-\dfrac{1}{3^{99}}\)
\(4B=3-\dfrac{1}{99}< 3\Rightarrow B< \dfrac{3}{4}\)
\(\Rightarrow4A< \dfrac{3}{4}\Rightarrow A< \dfrac{3}{16}\rightarrowđpcm\)
S = 1/3 + 1/3^2 + 1/3^3 + 1/3^4 + ... + 1/3^99 + 1/3^100
3S = 1 +1/3 +1/3^2 +1/3^3 + ... + 1/3^98 +1/3^99
3S - S = ( 1 + 1/3 + 1/3^2 +1/^3 + ... + 1/3^98 +1/3^99 ) - ( 1/3 + 1/3^2 + 1/3^3 + 1/3^4 +... + 1/3^99 + 1/3^100 )
2S = 1 - 1/3^100
S = (1 - 1/3^100). 1/2
Xét thừa số tổng quát: \(n!=1.2.3...n\)
Ta có:
\(L=\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)
\(L=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{100-1}{100!}\)
\(L=\dfrac{2-1}{1.2}+\dfrac{3-1}{1.2.3}+\dfrac{4-1}{1.2.3.4}+...+\dfrac{100-1}{1.2.3...100}\)
\(L=1-\dfrac{1}{1.2}+\dfrac{1}{1.2}-\dfrac{1}{1.2.3}+\dfrac{1}{1.2.3}-\dfrac{1}{1.2.3.4}+...+\dfrac{1}{1.2.3....99}-\dfrac{1}{1.2.3...100}\)
\(L=1-\dfrac{1}{1.2.3....100}< 1\left(đpcm\right)\)
Xét thừa số tổng quát: n ! = 1.2.3 ... nn!=1.2.3 ...n
Ta có:
L = 1 2 !+ 2 3 !+ 3 4 !+ . . . + 99 100 !L=12!+23!+34!+...+99100!
L = 2 - 1 2 !+ 3 - 1 3 !+ 4 - 1 4 !+ . . . + 100 - 1 100 !L=2- -12!+3- -13!+4- -14!+...+100- -1100!
L = 2 - 1 1.2+ 3 - 1 1.2.3+ 4 - 1 1.2.3.4+ . . . + 100 - 1 1.2.3 ... 100L=2−11.2+3−11.2.3+4−11.2.3.4+...+100−11.2.3...100
L = 1 - 1 1.2+ 1 1.2- 1 1.2.3+ 1 1.2.3- 1 1.2.3.4+ . . . + 1 1.2.3 .... 99- 1 1.2.3 ... 100L=1−11.2+11.2−11.2.3+11.2.3−11.2.3.4+...+11.2.3....99−11.2.3 ... 100
L = 1 - 1 1.2.3 .... 100<1(đpcm)