cho a+b+c=1 chung minh 1/a+1/b+1/c >=9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (a+b+c)(1/a+1/b+1/c) = 1 + 1 + 1 + a/b + a/c + b/a + b/c + c/a + c/b
= 3 + (a/b + b/a) + (a/c + c/a) + (b/c + c/b) (1)
Vì a, b, c > 0 nên ta có (Áp dụng Côsi)
a/b + b/a \(\ge\) 2 (2)
a/c + c/a \(\ge\) 2 (3)
b/c + c/b \(\ge\) 2 (4)
Từ (1), (2), (3) và (4) suy ra
(a+b+c)(1/a+1/b+1/c) \(\ge\) 9
Dấu "=" xảy ra <=> a = b = c
2. Áp dụng bất đẳng thức Cô - si cho 3 số dương \(\frac{a}{b},\frac{b}{c},\frac{c}{a}\)ta có
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)\(=3\)
Dấu "=" xảy ra <=> a = b = c
https://www.facebook.com/OnThiDaiHocKhoiA/posts/508217699295984
\(\frac{1}{\left(1+a^2\right)}+\frac{1}{\left(1+b^2\right)}\ge\frac{2}{\left(1+ab\right)}\)
\(\Leftrightarrow\left(1+b^2\right)\left(1+ab\right)+\left(1+a^2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow1+b^2+ab+ab^2+1+a^2+ab+a^3b-2\left(1+a^2+b^2+a^2b^2\right)\ge0\)
\(\Leftrightarrow ab\left(a^2-2ab+b^2\right)-\left(a^2+2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\left(đ\text{ieu nay khong the x ra}\right)\)
\(\text{Dau }"="\Leftrightarrow a=b=c=1\)
ta có \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}.\)
áp dụng vào bài ta có\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9>6\)
Ta có :\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=a\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
Nhận thấy \(\frac{a}{b}+\frac{b}{a}\ge2\)
Thật vậy ta có : \(\frac{a}{b}+\frac{b}{a}\ge2\)
<=> \(\frac{a^2+b^2}{ab}\ge2\Rightarrow a^2+b^2\ge2ab\Rightarrow a^2-2ab+b^2\ge0\Rightarrow\left(a-b\right)^2\ge0\left(\text{đúng}\right)\)
Tương tự ta chứng minh được \(\hept{\begin{cases}\frac{a}{c}+\frac{c}{a}\ge2\\\frac{b}{c}+\frac{c}{b}\ge2\end{cases}}\)
Khi đó \(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge3+2+2+2\ge9>6\)(đpcm)
áp dụng BĐT CAUCHY-SCHWARZ dưới dạng engel ta đc
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}\)
<=>\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{1}\)(vì a+b+c =1)
<=>\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\) (đpcm)