Cho A = 2+22+23+24+...+259+260 :
Chứng tỏ rằng : a) A:3 b) A :7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3
=>A chia hết cho 3
A= (2+22+23)+...+(258+259+260)
A=2.(1+2+22)+...+258.(1+2+22)
A=2.7+...+258.7
A=7.(2+...+258)
Vì 7 chia hết cho 7 =>7.(2+...+258) chia hết cho 7
CHIA HẾT CHO 3 :
A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3
=>A chia hết cho 3
c) \(55-7.\left(x+3\right)=6\)
\(7.\left(x+3\right)=55-6\)
\(7.\left(x+3\right)=49\)
\(x+3=49:7\)
\(x+3=7\)
\(x=7-3\)
\(x=4\)
d) \(-14-x+\left(-15\right)=-10\)
\(-29-x=-10\)
\(x=-29+10\)
\(x=-19\)
-----------------------------
Số số hạng của A:
\(60-1+1=60\) (số)
Do \(60⋮6\) nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 6 số hạng như sau:
\(A=\left(2+2^2+2^3+2^4+2^5+2^6\right)+\left(2^7+2^8+2^9+2^{10}+2^{11}+2^{12}\right)+...+\left(2^{55}+2^{56}+2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4+2^5\right)+2^7.\left(1+2+2^2+2^3+2^4+2^5\right)+...+2^{55}.\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(=2.63+2^7.63+...+2^{55}.63\)
\(=63.\left(2+2^7+...+2^{55}\right)\)
\(=21.3.\left(2+2^7+...+2^{55}\right)⋮21\)
Vậy \(A⋮21\)
55-7(x+3)=6
7(x+3)=55-6=49
(x+3)=49:7=7
x=7-3=4
(-14)-x + (-15)=-10
(-14)-x=-10-15=-25
x =-14-25=-39
A chia hết 31 chứ
Đề sai, viết lại thành:
A= 21+22+23+24+...+259+260
Giải:
A=21+22+23+...............+259+260
A=(21+22+23)+...............+(258+259+260)
A=2.(1+2+22)+............+258.(1+2+22)
A=2.7+.......................+258.7
A=(2+24+..............+258).7 ⋮ 7(đpcm)
\(A=2+2^2+2^3+2^4+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=6+2^2.\left(2+2^2\right)+...+2^{58}.\left(2+2^2\right)\)
\(A=6+2^2.6+...+2^{58}.6\)
\(A=6.\left(1+2^2+...+2^{58}\right)\)
Vì \(6⋮3\) nên \(6.\left(1+2^2+...+2^{58}\right)⋮3\)
Vậy \(A⋮3\)
_________________
\(A=2+2^2+2^3+2^4+...+2^{60}\)
\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(A=30+...+2^{56}.\left(2+2^2+2^3+2^4\right)\)
\(A=30+...+2^{56}.30\)
\(A=30.\left(1+...+2^{56}\right)\)
Vì \(30⋮5\) nên \(30.\left(1+...+2^{56}\right)⋮5\)
Vậy \(A⋮5\)
_________________
\(A=2+2^2+2^3+2^4+...+2^{60}\)
\(A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=14+...+2^{57}.\left(2+2^2+2^3\right)\)
\(A=14+...+2^{57}.14\)
\(A=14.\left(1+...+2^{57}\right)\)
Vì \(14⋮7\) nên \(14.\left(1+...+2^{57}\right)⋮7\)
Vậy \(A⋮7\)
\(#WendyDang\)
a: \(2A=2^2+2^3+...+2^{61}\)
=>A=2^61-2
b: \(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{55}+2^{58}\right)\) chia hết cho 7(1)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)=3\left(2+2^3+...+2^{59}\right)⋮3\left(2\right)\)
Từ (1), (2) suy ra A chia hết cho 21
Sửa dùm mình dòng cuối cùng là " Vậy \(A⋮5\) " nha. Cảm ơn bạn.
a A=\(2\)+\(2^2\)+\(2^3\)+\(2^4\)+...+\(2^{59}\)+\(2^{60}\)
A={\(2\)+\(2^2\)}+{\(2^3\)+\(2^4\)}+{\(2^5\)+\(2^6\)}+...+{\(2^{59}\)+\(2^{60}\)}
A=3.2+3.8+3.32+...
A=3.{2+8+32+...}
Suy ra:A chia het cho 3
b Làm tương tự như câu a nhưng ghép 3 số và tách thành tích của 7.k