K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2021

a, \(y=\dfrac{tanx}{4cos^2x-1}=\dfrac{sinx}{cosx\left(2cos2x+1\right)}\)

Hàm số xác định khi \(\left\{{}\begin{matrix}cosx\ne0\\cos2x\ne-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k\pi\\x\ne\pm\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

9 tháng 9 2021

b, \(y=\dfrac{1}{\sqrt{1-sin^2x}}=\dfrac{1}{\sqrt{cos^2x}}=\dfrac{1}{\left|cosx\right|}\)

Hàm số xác định khi \(cosx\ne0\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\)

11 tháng 8 2021

a, ĐK: \(x\ne\dfrac{k\pi}{2}\)

\(y=f\left(x\right)=\dfrac{1}{tanx}\)

\(f\left(-x\right)=\dfrac{1}{tan\left(-x\right)}=-\dfrac{1}{tanx}=-f\left(x\right)\Rightarrow\) Là hàm số lẻ.

11 tháng 8 2021

c, \(y=f\left(x\right)=sin^2x+2cosx-3\)

\(f\left(-x\right)=sin^2\left(-x\right)+2cos\left(-x\right)-3\)

\(=\left(-sinx\right)^2+2cosx-3\)

\(=sin^2x+2cosx-3=f\left(x\right)\)

\(\Rightarrow\) Là hàm số chẵn.

23 tháng 10 2017

Điều kiện: cosx ≠ 0; sinx ≠ 0 và sin2x ≠ 1.

⇔ x ≠ kπ/2, k ∈ Z và x ≠ π/4 + kπ, k ∈ Z.

Vậy tập xác định của hàm số là

D \ R [(kπ/2,k ∈ Z)] ∪ [(π/4 + kπ,k ∈ Z)].

6 tháng 6 2019

Ban đầu bạn phân tích từ sin2x - 2 ≠ 0 thành sinx.cosx ≠ 1.

Sao đến cuối bạn lại biến sinx.cosx ≠ 1 thành sin2x ≠ \(\frac{1}{2}\)

14 tháng 10 2019

y ' = c os2x.  (2x)'  - sin x + 2 1 2 .   x + 2 1 2 ' − 1 cos 2 x . ( x ) '

Chọn B

18 tháng 8 2018

NV
6 tháng 6 2021

1.

ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx-sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\\dfrac{sinx}{cosx}-sinx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)

2.

ĐKXĐ: \(sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)

3. 

ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)\ne0\\cos\left(x-\dfrac{\pi}{4}\right)\ne0\end{matrix}\right.\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{2}\right)\ne0\Leftrightarrow cos2x\ne0\)

\(\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

6 tháng 6 2021

cho hỏi cái này tí nha    \(sin\alpha\)=1/2  và \(cos\alpha\)=\(\dfrac{-\sqrt{3}}{2}\)

thì góc đó là \(\alpha=?\pi\)

26 tháng 5 2017

NV
19 tháng 7 2021

ĐKXĐ: \(sinx+cosx>0\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)>0\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)>0\)

\(\Leftrightarrow k2\pi< x+\dfrac{\pi}{4}< \pi+k2\pi\)

\(\Leftrightarrow-\dfrac{\pi}{4}+k2\pi< x< \dfrac{3\pi}{4}+k2\pi\)

19 tháng 7 2021

sao ra đc dòng t2 vậy ạ