Tìm TXD củ hàm số
y=tanx/4cos2x-1
y=1/căn 1-sin2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐK: \(x\ne\dfrac{k\pi}{2}\)
\(y=f\left(x\right)=\dfrac{1}{tanx}\)
\(f\left(-x\right)=\dfrac{1}{tan\left(-x\right)}=-\dfrac{1}{tanx}=-f\left(x\right)\Rightarrow\) Là hàm số lẻ.
Điều kiện: cosx ≠ 0; sinx ≠ 0 và sin2x ≠ 1.
⇔ x ≠ kπ/2, k ∈ Z và x ≠ π/4 + kπ, k ∈ Z.
Vậy tập xác định của hàm số là
D \ R [(kπ/2,k ∈ Z)] ∪ [(π/4 + kπ,k ∈ Z)].
Ban đầu bạn phân tích từ sin2x - 2 ≠ 0 thành sinx.cosx ≠ 1.
Sao đến cuối bạn lại biến sinx.cosx ≠ 1 thành sin2x ≠ \(\frac{1}{2}\)
y ' = c os2x. (2x)' - sin x + 2 1 2 . x + 2 1 2 ' − 1 cos 2 x . ( x ) '
Chọn B
1.
ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx-sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\\dfrac{sinx}{cosx}-sinx\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
2.
ĐKXĐ: \(sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
3.
ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)\ne0\\cos\left(x-\dfrac{\pi}{4}\right)\ne0\end{matrix}\right.\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{2}\right)\ne0\Leftrightarrow cos2x\ne0\)
\(\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
ĐKXĐ: \(sinx+cosx>0\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)>0\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)>0\)
\(\Leftrightarrow k2\pi< x+\dfrac{\pi}{4}< \pi+k2\pi\)
\(\Leftrightarrow-\dfrac{\pi}{4}+k2\pi< x< \dfrac{3\pi}{4}+k2\pi\)
a, \(y=\dfrac{tanx}{4cos^2x-1}=\dfrac{sinx}{cosx\left(2cos2x+1\right)}\)
Hàm số xác định khi \(\left\{{}\begin{matrix}cosx\ne0\\cos2x\ne-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k\pi\\x\ne\pm\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)
b, \(y=\dfrac{1}{\sqrt{1-sin^2x}}=\dfrac{1}{\sqrt{cos^2x}}=\dfrac{1}{\left|cosx\right|}\)
Hàm số xác định khi \(cosx\ne0\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\)