K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5

b) 24n + 2 + 1 = 24n . 2+ 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5

c) 92n+1   + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10

Hok tốt vui

b) 34n + 1 + 2 = 34n . 3 + 2 = (...1) . 3 + 2 = (....3) + 2 = (....5) ⋮ 5

c) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5

d) 24n + 2 + 1 = 24n . 2+ 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5

e) 92n+1   + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10

Hok tốt vui

15 tháng 7 2024

Chỉ

19 tháng 8 2023

 a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.

 b) 

Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)

c) Cách làm tương tự câu b.

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

Lời giải:
Ta thấy \(2^{4n+2}-2=2(2^{4n}-1)=2(16^n-1)\)

$16\equiv 1\pmod 5\Rightarrow 16^n\equiv 1\pmod 5$

$\Rightarrow 16^n-1\equiv 0\pmod 5$

$\Rightarrow 16^n-1\vdots 5$

$\Rightarrow 2(16^n-1)\vdots 10$

Vậy đáp án b.

 

3 tháng 8 2021

em cảm ơn cô rất nhiều

22 tháng 12 2016

viết lại đề cho chuẩn 

nhìn mình chẳng hiểu n là số mũ hay là nhân, hay có gạch trên đầu...

22 tháng 12 2016

à 

n la so mu nha ban giai mik voi 

29 tháng 1 2017

a, Giả sử 10a + b \(⋮\) 17         (1)

Vì 3a + 2b \(⋮\) 17 nên 8(3a + 2b) \(⋮\) 17

=> 24a + 16b \(⋮\) 17                             (2)

Từ (1) và (2) suy ra (10a + b) + (24a + 16b) \(⋮\) 17

=> 10a + b + 24a + 16b \(⋮\) 17

=> (10a + 24a) + (16b + b) \(⋮\) 17

=> 34a + 17b \(⋮\) 17

=> 17(2a + b) \(⋮\) 17

=> Giả sử đúng

Vậy 10a + b \(⋮\)17 (đpcm)

b, Giả sử 10a + b \(⋮\) 17        (1)

Vì a - 5b \(⋮\) 17 nên 7(a - 5b) \(⋮\) 17

=> 7a - 35b \(⋮\) 17                  (2)

Từ (1) và (2) suy ra (10a + b) + (7a - 35b) \(⋮\) 17

=> 10a + b + 7a - 35b \(⋮\) 17

=> (10a + 7a) + (b - 35b) \(⋮\) 17

=> 17a + (-34b) \(⋮\) 17

=> 17.[a + (-2)b] \(⋮\) 17

=> Giả sử đúng

Vậy 10a + b \(⋮\) 17 (đpcm)

22 tháng 11 2021
23456789:123
12 tháng 1 2018

+, Nếu 100a+10b+c chia hết cho 21

=> 4.(100a+10b+c) chia hết cho 21

=> 400a+40b+4c chia hết cho 21

Mà 399a và 42b đều chia hết cho 21

=> 400a+40b+4c-399a-42b chia hết cho 21

=> a-2b+4c chia hết cho 21 (1)

+, Nếu a-2b+4c chia hết cho 21

Mà 399a và 42b đều chia hết cho 21

=> a-2b+4c+399a+42b chia hết cho 21

=> 400a+40b+4c chia hết cho 21

=> 4.(100a+10b+c) chia hết cho 21

=> 100a+10b+c chia hết cho 21 ( vì 4 và 21 là 2 số nguyên tố cùng nhau )

Tk mk nha

12 tháng 12 2023

hơi dài