K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

A) XÉT \(\Delta ABC\)

CÓ: \(\widehat{A}+\widehat{AB}C+\widehat{ACB}=180^0\)( ĐỊNH LÍ)

THAY SỐ: \(85^0+40^0+\widehat{ACB}=180^0\)

                                            \(\widehat{ACB}=180^0-85^0-40^0\)

                                          \(\widehat{ACB}=55^0\)

\(\Rightarrow\widehat{A}>\widehat{ACB}>\widehat{ABC}(85^0>55^0>40^0)\)

\(\Rightarrow BC>AB>AC\)( ĐỊNH LÍ)

B)  TA CÓ: \(\widehat{ABC}+\widehat{CBE}=180^0\)( KỀ BÙ)

THAY SỐ: \(40^0+\widehat{CBE}=180^0\)

                                \(\widehat{CBE}=180^0-40^0\)

                                 \(\widehat{CBE}=140^0\)

TA CÓ: \(\widehat{BAC}+\widehat{DAC}=180^0\)(KỀ BÙ)

THAY SỐ: \(85^0+\widehat{DAC}=180^0\)

                              \(\widehat{DAC}=180^0-85^0\)

                            \(\widehat{DAC}=95^0\)

XÉT \(\Delta CBE\)

CÓ: \(\widehat{CBE}=140^0\)

\(\Rightarrow\widehat{CBE}\)LÀ GÓC LỚN NHẤT ( ĐỊNH LÍ)

MÀ CE LÀ CẠNH ĐỐI DIỆN VỚI \(\widehat{CBE}\)

\(\Rightarrow CE\)LÀ CẠNH LỚN NHẤT ( ĐỊNH LÍ)

\(\Rightarrow CE>CB\)( ĐỊNH LÍ) (1)

XÉT \(\Delta ACD\)

CÓ: AC =AD ( GT)

\(\Rightarrow\Delta ACD\)CÂN TẠI A ( ĐỊNH LÍ)

\(\Rightarrow\widehat{D}=\widehat{ACD}\)( TÍNH CHẤT) 

MÀ \(\widehat{D}+\widehat{ACD}+\widehat{CAD}=180^0\)( ĐỊNH LÍ TỔNG 3 GÓC TRONG 1 TAM GIÁC)

\(\Rightarrow\widehat{D}+\widehat{D}+\widehat{CAD}=180^0\)

THAY SỐ: \(2\widehat{D}+95^0=180^0\)

                     \(\widehat{D}=\left(180^0-95^0\right):2\)

                   \(\widehat{D}=42,5^0\)

XÉT \(\Delta BCD\)

CÓ: \(\widehat{D}>\widehat{ABC}\left(42,5^0>40^0\right)\)

\(\Rightarrow CB>CD\)(ĐỊNH LÍ) (2)

TỪ (1) ; (2)  \(\Rightarrow CE>CB>CD\)

MK KẺ HÌNH XẤU LẮM!! NÊN MK KO KẺ ĐÂU, BN KẺ GIÙM MK NHA!!!!!! THANKS

CHÚC BN HỌC TỐT!!!!!!

21 tháng 4 2019

A B C D E I

a, Áp dụng định lý Pytago vào tam giác vuông ABC có:

 AB2 + AC2 = BC2

9+ AC2 = 152

81 + AC2 = 225

AC2 = 225 - 81

AC= 144

AC = 12 (cm)

Xét tam giác ABC có: AB < AC < BC.
nên góc ACB <  ABC < BAC ( đối diện với góc lớn hơn là cạnh lớn hơn )

b,do A là trung điểm BD (gt)
nên AB=DB 
nên CA là đg trung tuyến.
Xét tam giác BCD có: CA vuông góc AB nên CA là đg cao
mà CA là đg trung tuyến.
nên tam giác BCD cân tại C

c,...

21 tháng 4 2019
10 sao nhé10 K NHA !
12 tháng 10 2019

Bài 3:

Xét 2 \(\Delta\) \(AMO\)\(BNO\) có:

\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)

\(OA=OB\) (vì O là trung điểm của \(AB\))

\(AM=BN\left(gt\right)\)

=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)

=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)

\(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)

=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)

=> \(M,O,N\) thẳng hàng. (1)

Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)

=> \(OM=ON\) (2 cạnh tương ứng) (2)

Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)

Bài 4:

Chúc bạn học tốt!

21 tháng 3 2020

XÉT \(\Delta ABC\)CÂN TẠI A

\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

TA CÓ \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)

THAY\(50^0+\widehat{B}+\widehat{C}=180^o\)

                      \(\widehat{B}+\widehat{C}=130^o\)

\(\widehat{B}=\widehat{C}\)

\(\Rightarrow\widehat{B}=\widehat{C}=\frac{130^o}{2}=65^o\)

TA CÓ \(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)

\(\Rightarrow\widehat{DBA}=180^o-65^o=115^o\)

TA CÓ\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)

\(\Rightarrow\widehat{ACE}=180^o-65^0=115^o\)

XÉT \(\Delta ACE\)CÓ AC=CE (GT) =>\(\Delta ACE\)CÂN TẠI C 

\(\Rightarrow\widehat{CAE}=\widehat{AEC}=\frac{180^o-115^0}{2}=32,5^0\)

XÉT \(\Delta ABD\)CÓ AB=BD (GT) =>\(\Delta ABD\)CÂN TẠI B

\(\Rightarrow\widehat{DAB}=\widehat{ADB}=\frac{180^o-115^0}{2}=32,5^0\)

TA CÓ\(\widehat{DAB}+\widehat{BAC}+\widehat{EAC}=\widehat{DAE}\)

THAY\(32,5^o+50^0+32,5^0=\widehat{DAE}\)

       \(\Rightarrow\widehat{DAE}=115^0\)

5 tháng 10 2019

Bài 2:

a) Xét 2 \(\Delta\) \(ABM\)\(CNM\) có:

\(AM=CM\) (vì M là trung điểm của \(AC\))

\(\widehat{AMB}=\widehat{CMN}\) (vì 2 góc đối đỉnh)

\(BM=NM\) (vì M là trung điểm của \(BN\))

=> \(\Delta ABM=\Delta CNM\left(c-g-c\right).\)

=> \(AB=CN\) (2 cạnh tương ứng)

=> \(\widehat{BAM}=\widehat{NCM}\) (2 góc tương ứng)

Ta có: \(\widehat{BAM}+\widehat{NCM}=180^0\) (vì 2 góc kề bù)

\(\widehat{BAM}=90^0\left(gt\right)\)

=> \(90^0+\widehat{NCM}=180^0\)

=> \(\widehat{NCM}=180^0-90^0\)

=> \(\widehat{NCM}=90^0.\)

=> \(\widehat{BAM}=\widehat{NCM}=90^0\)

=> \(CN\perp AB.\)

b) Xét 2 \(\Delta\) \(AMN\)\(CMB\) có:

\(AM=CM\) (như ở trên)

\(\widehat{AMN}=\widehat{CMB}\) (vì 2 góc đối đỉnh)

\(MN=MB\) (như ở trên)

=> \(\Delta AMN=\Delta CMB\left(c-g-c\right)\)

=> \(AN=BC\) (2 cạnh tương ứng)

=> \(\widehat{ANM}=\widehat{CBM}\) (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AN\) // \(BC.\)

Chúc bạn học tốt!

5 tháng 10 2019

Hỏi đáp Toán

14 tháng 7 2016

a) Ta có: Tam giác ABC vuông cân => Góc ABC = Góc ACB = ( 180o - 90o ) :2 = 45o

Mặt khác Góc ABC + Góc EBC = 180o ( kề bù )

=> Góc EBC = 135o

EB = BC => Tam giác EBC cân tại B

=> Góc BEC = Góc BCE = ( 180o - 135o ) :2 = 22,5o =='

Vậy Tam giác AEC có Góc A = 90 độ : Góc C = 22,5+45 = 67,5 độ : Góc E = 22,5 độ

b) Ta có: BC = BE (gt) (1)

BF = BC (2)

=> BF = BE => tam giác BEF cân tại B

Ta có: Góc EBC = 135 độ

=> Góc EBF = 45 độ

=> Góc BEF = Góc BFE = ( 180 - 45 ) :2 = 67,5 độ

Vậy tam giác CEF có góc C = 22,5 độ

Góc F = 67,5 độ

Góc E = (67,5+22,5) = 90 độ

14 tháng 7 2016

ban oi ve hinh gup minh voi