cho n là số tự nhiên, chứng minh:
a)n.(n+1).(n+2) chia hết cho 2 và 3
b) n.(n+1).(2n+1) chia hết cho 2 và 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
(5^2n+1) + (2^n+4) + (2^n+1) = (25^n).5 - 5.(2^n) + (2^n).( 5 + 2^4 +2) = 5.( 25^n - 2^n ) + 23.2^n chia hết cho 23.
Lời giải:
a)
\(5^{2n+1}+2^{n+4}+2^{n+1}=5.25^n+16.2^n+2.2^n\)
\(\equiv 5.2^n+16.2^n+2.2^n\pmod {23}\)
\(\equiv 23.2^n\equiv 0\pmod {23}\)
Ta có đpcm.
b)
\(2^{2n+2}+24n+14\) hiển nhiên chia hết cho $2(1)$
Mặt khác:
Nếu $n=3k+1$:
$2^{2n+2}+24n+14=2^{6k+4}+72k+38$
$=16.2^{6k}+72k+38\equiv 16+72k+38=54+72k\equiv 0\pmod 9$
Nếu $n=3k$:
$2^{2n+2}+24n+14=2^{6k+2}+72k+14=4.2^{6k}+72k+14$
$\equiv 4+72k+14=18+72k\equiv 0\pmod 9$
Nếu $n=3k+2$:
$2^{2n+2}+24n+14=2^{6k+6}+72k+62\equiv 1+72k+62$
$\equiv 63+72k\equiv 0\pmod 9$
Vậy tóm lại $2^{2n+2}+24n+14$ chia hết cho $9$ (2)
Từ $(1);(2)\Rightarrow 2^{2n+2}+24n+14\vdots 18$ (đpcm)
a. Xét n chẵn
=> n + 10 chẵn
=> (n + 10) (n + 15) chẵn => chia hết cho 2
Xét n lẻ
=> n + 15 chẵn
=> (n + 10) (n + 15) chẵn => chia hết cho 2
Vậy (n + 10) (n + 15) chia hết cho 2 với mọi n
b. n (n + 1) (n + 2)
=> n + n + 1 + n + 2
=> 3n + 3
Ta có : 3n chia hết cho 3 ; 3 chia hết cho 3
=> 3n + 3 chia hết cho 3
Ta có n (n + 1) là tích hai số liên tiếp chia hết cho 2
Ta có n (n + 2) tích hai số liên tiếp chia hết cho 2
Và n (n + 2) = n.n + n.2 = 2n . n2 có cơ số 2 nên chia hết cho 2.
c. n (n + 1) (2n + 1) = n (n + 1) (n + 2 + n - 1) = n (n + 1) (n + 2) (n - 1) (n + 1) n
Các số trên là tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và chia hết cho 2