-Cho A= \(1^3+2^3+3^3+.....+100^3\)
B= \(1+2+3+.....+100\)
-Chứng minh A chia hết cho B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B1 a, a^3 - a = a.(a^2-1) = (a-1).a.(a+1) chia hết cho 3
b, a^7-a = a.(a^6-1) = a.(a^3-1).(a^3+1)
Ta thấy số lập phương khi chia 7 dư 0 hoặc 1 hoặc 6
+Nếu a^3 chia hết cho 7 => a^7-a chia hết cho 7
+Nếu a^3 chia 7 dư 1 thì a^3-1 chia hết cho 7 => a^7-a chia hết cho 7
+Nếu a^3 chia 7 dư 6 => a^3+1 chia hết cho 7 => a^7-a chia hết cho 7
Vậy a^7-a chia hết cho 7
b, a^7-a=a(a^6-1)
=a(a^3+1)(a^3-1)
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1)
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1)
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1)
+7a (a-1) (a+1) (a^2+a-1)
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
+7a (a-1) (a+1) (a^2+a-1)
+7a (a-1) (a+1) (a^2-a-6)
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7)
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)]
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7.
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7


https://www.toaniq.com/tinh-gia-tri-bieu-thuc-a-13-23-33-1003/
bạn vào táp này khác có lời giải

Ta có :
B=101.50
gt⇒A=(1003+13)+(993+23)+...+(503+513)⇒A⋮101
gt⇒A=(993+13)+(983+23)+...+(493+513)+503+1003⇒A⋮50
Mà : (101;50)=1
⇒A⋮50.101⇒A⋮B
Ta có :
B=101.50
⇒A=(1003+13)+(993+23)+...+(503+513)⇒A⋮101
⇒A=(993+13)+(983+23)+...+(493+513)+503+1003⇒A⋮50
Mà : (101;50)=1
⇒A⋮50.101⇒A⋮B


\(B = 3 1 + 3 2 + 3 3 + . . . . . + 3 100 = ( 3 + 3 2 ) + ( 3 3 + 3 4 ) + . . . + ( 3 99 + 3 100 ) = 3 ( 1 + 3 ) + 3 3 ( 1 + 3 ) + . . . + 3 99 ( 1 + 3 ) = 3.4 + 3 3 .4 + . . . + 3 99 .4 = 4 ( 3 + 3 3 + . . . + 3 99 ) d o : 4 ⋮ 2 => 4 ( 3 + 3 3 + . . . + 3 99 ) ⋮ 2 => B ⋮ 2 vậy B chia hết cho 2\)
\(B=3\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=4\cdot\left(3+...+3^{99}\right)⋮2\)