Tính nhanh giá tị mỗi biểu thức sau :
a) \(\dfrac{-5}{13}\) + \((\dfrac{-8}{13}\) + 1\()\);
b) \(\dfrac{2}{3}\) + ( \(\dfrac{3}{8}\) + \(\dfrac{-2}{3}\) );
c) ( \(\dfrac{-3}{4}\) + \(\dfrac{5}{8}\) ) + \(\dfrac{-1}{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{11}\right)}{13\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{17}+\dfrac{1}{11}\right)}=\dfrac{3}{13}\)
\(\dfrac{\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{11}}{\dfrac{13}{4}-\dfrac{13}{5}+\dfrac{13}{7}+\dfrac{13}{11}}\)
\(=\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{11}\right)}{13\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{11}\right)}\)
\(=\dfrac{3}{13}\)
Gợi ý: Sử dụng tính chất phân phối của phép nhân đối với phép cộng để nhóm thừa số chung ra ngoài.
\(A=\dfrac{6}{7}+\dfrac{1}{7}.\dfrac{2}{7}+\dfrac{1}{7}.\dfrac{5}{7}.\)
\(A=\dfrac{6}{7}+\dfrac{1}{7}\left(\dfrac{2}{7}+\dfrac{5}{7}\right).\)
\(A=\dfrac{6}{7}+\dfrac{1}{7}.1.\)
\(A=\dfrac{6}{7}+\dfrac{1}{7}=1.\)
Vậy \(A=1.\)
\(B=\dfrac{40}{9}.\dfrac{13}{3}-\dfrac{4}{3}.\dfrac{40}{9}.\)
\(B=\dfrac{4}{9}.\dfrac{13}{3}-\dfrac{4}{9}.\dfrac{40}{3}.\)
\(B=\dfrac{4}{9}\left(\dfrac{13}{3}-\dfrac{40}{3}\right).\)
\(B=\dfrac{4}{9}.\left(-9\right).\)
\(B=-4.\)
Vậy \(B=-4.\)
\(C=\left|-3\left(\dfrac{-13}{15}-\dfrac{17}{21}\right)\right|-\left|\dfrac{-13}{15}+\dfrac{17}{7}\right|+\left(-12+\dfrac{35}{3}\right):\left|-\dfrac{7}{6}\right|\\ =\left|-3.-\dfrac{176}{105}\right|-\left|-\dfrac{6}{35}\right|+\left(-\dfrac{1}{3}\right):\dfrac{7}{6}\\ =\dfrac{176}{35}-\dfrac{6}{35}-\dfrac{1}{3}:\dfrac{7}{6}\\ =\dfrac{176}{35}-\dfrac{6}{35}-\dfrac{2}{7}\\ =\dfrac{170}{35}-\dfrac{2}{7}=\dfrac{32}{7}.\)
Bài 2:
\(=\dfrac{28}{25}\cdot\dfrac{15}{7}\cdot5=\dfrac{75}{25}\cdot4=12\)
Bài 1:
a: \(x+\dfrac{7}{8}=\dfrac{13}{2}:4=\dfrac{13}{8}\)
nên x=13/8-7/8=6/8=3/4
b: \(x:\dfrac{5}{3}=\dfrac{6}{5}-\dfrac{2}{3}=\dfrac{18-10}{15}=\dfrac{8}{15}\)
nên \(x=\dfrac{8}{15}\cdot\dfrac{5}{3}=\dfrac{8}{9}\)
\(=\left(log_{a^{-1}}a^2\right)^2+\dfrac{1}{2}.\dfrac{1}{2}log_aa\)
\(=\left(-1.2.log_aa\right)^2+\dfrac{1}{4}=4+\dfrac{1}{4}=\dfrac{17}{4}\)
\(a)\dfrac{-5}{13}+\left(-\dfrac{8}{13}+1\right)\\ =\dfrac{-5}{13}+\dfrac{-8}{13}+1\\ =0+1=1\)
\(b)\dfrac{2}{3}+\left(\dfrac{3}{8}+\dfrac{-2}{3}\right)\\ =\dfrac{2}{3}-\dfrac{2}{3}+\dfrac{3}{8}\\ =\dfrac{3}{8}\)
\(c)\left(\dfrac{-3}{4}+\dfrac{5}{8}\right)+\dfrac{-1}{8}=\dfrac{-3}{4}+\dfrac{4}{8}\\=\dfrac{-6}{8}+\dfrac{4}{8}=\dfrac{-2}{8}=\dfrac{-1}{4}\)