Cho a, b, c > 0 .CMR: \(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ac}{a+c}\) ≤ \(\dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM cho các số dương:
\(a^2+bc\geq 2\sqrt{a^2bc}; b^2+ac\geq 2\sqrt{b^2ac}; c^2+ab\geq 2\sqrt{c^2ab}\)
Do đó:
\(\text{VT}=\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2bc}}+\frac{1}{2\sqrt{b^2ac}}+\frac{1}{2\sqrt{c^2ab}}\)
hay \(\text{VT}\leq \frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{2abc}(*)\)
Tiếp tục áp dụng BĐT AM-GM:
\(\left\{\begin{matrix} \sqrt{bc}\leq \frac{b+c}{2}\\ \sqrt{ac}\leq \frac{a+c}{2}\\ \sqrt{ab}\leq \frac{a+b}{2}\end{matrix}\right.\Rightarrow \sqrt{ab}+\sqrt{bc}+\sqrt{ac}\leq a+b+c(**)\)
Từ \((*);(**)\Rightarrow \text{VT}\leq \frac{a+b+c}{2abc}\)
Ta có đpcm
Dấu bằng xảy ra khi \(a=b=c\)
\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)
Xét \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)
\(\Rightarrow VT=\dfrac{a^3}{a^2+ab+bc+ac}+\dfrac{b^3}{b^2+ab+bc+ac}+\dfrac{c^3}{c^2+ab+bc+ac}\)
\(\Leftrightarrow VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\)
Áp dụng bđt Cauchy ta có :
\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3a}{4}\)
Thiết lập tương tự và thu lại ta có :
\(VT+\dfrac{a+b+c}{2}\ge\dfrac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\dfrac{3}{4}\left(a+b+c\right)-\dfrac{1}{2}\left(a+b+c\right)=\dfrac{a+b+c}{4}\left(đpcm\right)\)
Dấu '' = '' xảy ra khi \(a=b=c=3\)
Ta có:\(\dfrac{ab}{a+b}=\dfrac{ab+b^2-b^2}{a+b}=\dfrac{b\left(a+b\right)-b^2}{a+b}=b-\dfrac{b^2}{a+b}\)
Tương tự với các vế ta được:
\(\dfrac{bc}{b+c}=c-\dfrac{c^2}{b+c}\) và \(\dfrac{ac}{a+c}=a-\dfrac{a^2}{a+c}\)
Cộng theo vế:
\(VT=a+b+c-\left(\dfrac{b^2}{a+b}+\dfrac{c^2}{b+c}+\dfrac{a^2}{a+c}\right)\)
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(VT\le a+b+c-\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=a+b+c-\dfrac{a+b+c}{2}=\dfrac{1}{2}\left(a+b+c\right)\)
Ta có:
\(\dfrac{bc}{a}+\dfrac{ac}{b}=c\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\ge2c\)
Chứng minh tương tự, ta có:
\(\dfrac{bc}{a}+\dfrac{ab}{c}\ge2b\)
\(\dfrac{ac}{b}+\dfrac{ab}{c}\ge2a\)
\(\Rightarrow2\left(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\ge a+b+c\)
Dấu = xảy ra khi a = b = c
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
a) Áp dụng bất đẳng thức AM-GM ta có:
\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{abc^2}{ab}}=2\sqrt{c^2}=2\left|c\right|=2c\left(c>0\right)\)
Chứng minh tương tự ta được: \(\left\{{}\begin{matrix}\dfrac{ac}{b}+\dfrac{ab}{c}\ge2a\\\dfrac{bc}{a}+\dfrac{ab}{c}\ge2b\end{matrix}\right.\)
Cộng theo vế: \(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\ge a+b+c\left(đpcm\right)\)
Áp dụng liên tiếp AM-GM và Cauchy-Schwarz ta được:
\(\dfrac{ab}{a+b}=\dfrac{ab+b^2-b^2}{a+b}=\dfrac{b\left(a+b\right)}{a+b}-\dfrac{b^2}{a+b}=b-\dfrac{b^2}{a+b}\)
Chứng minh tương tự:
\(\left\{{}\begin{matrix}\dfrac{bc}{b+c}=\dfrac{bc+c^2-c^2}{b+c}=\dfrac{c\left(b+c\right)}{b+c}-\dfrac{c^2}{b+c}=c-\dfrac{c^2}{b+c}\\\dfrac{ac}{c+a}=\dfrac{ac+a^2-a^2}{c+a}=\dfrac{a\left(c+a\right)}{c+a}-\dfrac{a^2}{c+a}=a-\dfrac{a^2}{c+a}\end{matrix}\right.\)
Cộng theo vế:
\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ac}{a+c}=a+b+c-\left(\dfrac{b^2}{a+b}+\dfrac{c^2}{b+c}+\dfrac{a^2}{a+c}\right)\le\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=a+b+c-\dfrac{a+b+c}{2}=\dfrac{a+b+c}{2}\left(đpcm\right)\)
b)Đặt \(A=\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)
\(A=\dfrac{a\left(a+b\right)-a^2}{a+b}+\dfrac{b\left(b+c\right)-b^2}{a+b}+\dfrac{c\left(c+a\right)-c^2}{c+a}\)
\(A=a+b+c-\dfrac{a^2}{a+b}-\dfrac{b^2}{b+c}-\dfrac{c^2}{c+a}\)
Lại có:\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
\(\Rightarrow A\le a+b+c-\dfrac{a+b+c}{2}=\dfrac{a+b+c}{2}\)
\(\Rightarrowđpcm\)