Giá trị nguyên nhỏ nhất của x thỏa mãn |2-x|=x-2 là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhắc lại |a| = a nếu a > 0 và |a| = - a nếu a < 0
Ta có |2 - x| = x - 2 = - (2 - x) => 2 - x < 0 => 2 < x => x nguyên nhỏ nhất bằng 2
ĐS: 2
Ta có |a| = -a <=> a < 0
Mà |2 - x| = x - 2
<=> 2 - x < 0
<=> x > 2
Vậy GTNN của x thỏa mãn đề bài là x = 2
1. \(\frac{-17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{80}{84}< \frac{84x+48}{84}< \frac{49}{84}\)
\(-80< 84x+48< 49\)
\(\begin{cases}-80< 84x+48\\84x+48< 49\end{cases}\)
\(\begin{cases}84x>-128\\84x< 1\end{cases}\)
\(\begin{cases}x>-\frac{32}{21}\\x< \frac{1}{84}\end{cases}\)
\(\Rightarrow-\frac{32}{21}< x< \frac{1}{84}\)
\(-\frac{17}{21}\div\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{32}{21}< x< \frac{1}{84}\)
\(-1^{11}_{21}< x< \frac{1}{84}\)
\(\Rightarrow x\in\left\{-1;0\right\}\)
Vậy x = 0
\(\frac{4}{3}\times1,25\times\left(\frac{16}{5}-\frac{5}{16}\right)< 2x< 4-\frac{4}{3}+3-\frac{3}{2}+2\)
\(\frac{77}{16}< 2x< \frac{37}{6}\)
\(\frac{77}{32}< x< \frac{37}{12}\)
\(2^{13}_{32}< x< 3^1_{12}\)
=> x = 3
/ 2-x/ =/x -2/ = x -2 >/ 0
=> x >/ 2
x thuộc Z
=> x =2 ( nhỏ nhất)
Theo tính chất |a| = -a <=> a < 0
Ta có |2 - x| = x - 2
<=> 2 - x <= 0
<=> x > 2
Vậy GTNN của x thỏa mãn là x = 2