Cho các điểm A(7;2) B(2;8) C(8;4) xác định đường thẳng (d) đi qua A sao cho các ddierm B và C nằm về 2 phía của (d) và cách đều (d)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tam giác có được là:
\(C^2_3\cdot C^1_4+C^1_3\cdot C^2_4=30\)
1 tam giác có 3 đỉnh ko thẳng hàng.
Theo NL Đi-rích-lê, có 3 điểm, 2 đường thẳng => Có 1 đường thẳng chứa 2 điểm, đường thẳng kia chứa điểm còn lại
Ta chia trường hợp:
*TH1: 2 điểm trên đường thẳng a, 1 điểm trên đường thẳng b
+) Điểm 1 trên a có 3 cách chọn
Điểm 2 trên a có 2 cách chọn
+) Điểm 1 trên b có 1 cách chọn
=> Tạo được 3.2.1 = 6 (tam giác)
*TH2: 1 điểm trên a, 2 điểm trên b
+) Điểm 1 trên a có 1 cách chọn
+) Điểm 1 trên b có 4 cách chọn
Điểm 2 trên b có 3 cách chọn
=> Tạo được 1.3.4 = 12 (tam giác)
Vậy tạo được tất cả 6+12=18 tam giác từ 7 điểm trên.
Câu 1: \(9^6\cdot7-3^{12}\cdot4\)
\(=3^{2^6}\cdot7-3^{12}\cdot4\)
\(=3^{12}\cdot7-3^{12}\cdot4\)
\(=3^{12}\left(7-4\right)\)
\(=3^{12}\cdot3\)
\(=3^{13}\)
Câu 2:
a) Số đường thẳng đi qua 2 điểm là: \(3+2+1=6\left(đường\right)\)
b) Các đường thẳng đó là: \(AB;AC;AD;BC;BD;CD\)
B1:
a.3n+7 chia hết cho n suy ra 7 chia hết cho n suy ra n thuộc ước của 7
B đối xứng với A qua I \(\Leftrightarrow I\) là trung điểm AB
\(\Rightarrow\left\{{}\begin{matrix}x_B=2x_I-x_A=9\\y_B=2y_I-y_A=4\end{matrix}\right.\) \(\Rightarrow B\left(9;4\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AC}=\left(3;y-3\right)\\\overrightarrow{BC}=\left(-4;y-4\right)\end{matrix}\right.\)
\(ABC\) vuông tại C \(\Leftrightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\)
\(\Leftrightarrow-12+\left(y-3\right)\left(y-4\right)=0\)
\(\Leftrightarrow...\)