chứng minh rằng 111...1 - 10n chia hết cho 9
n chữ số 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 111...11(n chữ số 1) có tổng các chữ số = 1 . n = n nên n chia cho 9 dư bao nhiêu thì 111...11(n chữ số 1) chia cho 9 dư bấy nhiêu.
Mà 10n = \(\overline{n0}\) nên n + 0 có cùng số dư với n. Vậy, 10n có cùng số dư với 111...11(n chữ số 1).
Vì 111...11(n chữ số 1) và 10n có cùng số dư khi chia cho 9 nên hiệu đó chia hết cho 9