giải PT: \(x^4-2x^2+7x-12=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
`x^2 +5x+6=0`
`<=> x^2 + 3x +2x+6=0`
`<=> x(x+3)+2(x+3)=0`
`<=> (x+3)(x+2)=0`
`<=> x+3=0 hoặcx+2=0`
`<=> x=-3 hoặc x=-2`
b)
`x^2 -7x+6=0`
`<=> x^2 -6x-x+6=0`
`<=> x(x-6)-(x-6)=0`
`<=> (x-6)(x-1)=0`
`<=> x-6=0 hoặc x-1=0 `
`<=> x=6 hoặc x=1`
c)
`x^2 +x -12=0`
`<=> x^2 +4x-3x-12=0`
`<=> x(x+4)-3(x+4)=0`
`<=> (x+4)(x-3)=0`
`<=> x+4=0 hoặc x-3=0`
`<=> x=-4 hoặc x=3`
d)
`x^2 -x-6=0`
`<=>x^2 -3x+2x-6=0`
`<=> x(x-3)+2(x-3)=0`
`<=> (x-3)(x+2)=0`
`<=> x-3=0 hoặc x+2=0`
`<=> x=3 hoặc x=-2`
e)
`2x^2 -3x-5=0`
`<=> 2x^2 -5x+2x-5=0`
`<=> x(2x-5)+(2x-5)=0`
`<=> (2x-5)(x+1)=0`
`<=> 2x-5=0 hoặc x+1=0`
`<=> x=5/2 hoặc x=-1`
a)\(\left\{{}\begin{matrix}3x-2y=3\\2x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=5\\3x-2y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\3-2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
b)\(x^2+7x+12=0\)
\(\Leftrightarrow x^2+3x+4x+12=0\)( chị nghĩ + 12 đúng hơn á )
\(\Leftrightarrow x\left(x+3\right)+4\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=-4\end{matrix}\right.\)
a)Ta có \(\left(2x+1\right)\left(x^2+2\right)=0\)<=>
2x+1=0<=>x=\(-\frac{1}{2}\)
hoặc \(x^2+2=0\)<=>\(x^2=-2\)(Vô lí)
Vậy tập nghiệm của pt S=(\(-\frac{1}{2}\))
b)\(\left(x^2+4\right)\left(7x-3\right)=0\)
<=>\(\left[{}\begin{matrix}x^2+4=0\\7x-3=0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x^2=-4\\x=\frac{3}{7}\end{matrix}\right.\)
\(x^2=-4\) vô lí
Vậy ..........
c)\(\left(x^2+x+1\right)\left(6-2x\right)=0\)
<=>\(\left[{}\begin{matrix}x^2+x+1=0\\6-2x=0\end{matrix}\right.\)
Vì \(x^2+x+1>0\)(dễ dàng c/m)
=>6-2x=0=>x=3
Vậy...
d)\(\left(8x-4\right)\left(x^2+2x+2\right)=0\)
<=>8x-4=0,x=\(\frac{1}{2}\)
hoặc \(x^2+2x+2=0\)(vô lí)
Vậy .....
\(1;x^2+7x+10=0\Rightarrow x^2+2x+5x+10=0\Rightarrow x\left(x+2\right)+5\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x+5\right)=0\)
=> x + 2 = 0 hoặc x + 5 = 0
=> x = -2 hoặc x = - 5
2, x^4 - 5x^2 + 4 = 0
x^4 - 4x^2 - x^2 + 4 = 0
x^2 ( x^2 - 4) - ( x^2 - 4) = 0
( x^2 - 1)( x^2 - 4) = 0
( x - 1 )( x + 1)( x - 2)( x + 2) = 0
=> x= 1 hoặc x= -1 hoặc x = 2 hoặc x = - 2
Đúng cho mi8nhf mình giải tiếp cho
(4x - 3)2 - (2x + 1)2 = 0
\(\Leftrightarrow\) (4x - 3 - 2x - 1)(4x - 3 + 2x + 1) = 0
\(\Leftrightarrow\) (2x - 4)(6x - 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=4\\6x=2\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
3x - 12 - 5x(x - 4) = 0
\(\Leftrightarrow\) 3x - 12 - 5x2 + 20x = 0
\(\Leftrightarrow\) -5x2 + 23x - 12 = 0
\(\Leftrightarrow\) 5x2 - 23x + 12 = 0
\(\Leftrightarrow\) 5x2 - 20x - 3x + 12 = 0
\(\Leftrightarrow\) 5x(x - 4) - 3(x - 4) = 0
\(\Leftrightarrow\) (x - 4)(5x - 3) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-4=0\\5x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=4\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy ...
(8x + 2)(x2 + 5)(x2 - 4) = 0
\(\Leftrightarrow\) (8x + 2)(x2 + 5)(x - 2)(x + 2) = 0
Vì x2 \(\ge\) 0 \(\forall\) x nên x2 + 5 > 0 \(\forall\) x
\(\Rightarrow\) (8x + 2)(x - 2)(x + 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}8x+2=0\\x-2=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=2\\x=-2\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt!
a) Ta có: \(\left(4x-3\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(4x-3-2x-1\right)\left(4x-3+2x+1\right)=0\)
\(\Leftrightarrow\left(2x-4\right)\left(6x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\6x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{2;\dfrac{1}{3}\right\}\)
b) Ta có: \(3x-12-5x\left(x-4\right)=0\)
\(\Leftrightarrow3\left(x-4\right)-5x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3-5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy: \(S=\left\{4;\dfrac{3}{5}\right\}\)
c) Ta có: \(\left(8x+2\right)\left(x^2+5\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow2\left(4x+1\right)\left(x^2+5\right)\left(x-2\right)\left(x+2\right)=0\)
mà \(2>0\)
và \(x^2+5>0\forall x\)
nên \(\left(4x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-1\\x=2\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=2\\x=-2\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{4};2;-2\right\}\)
http://k2pi.net.vn/showthread.php?t=24135
http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135http://k2pi.net.vn/showthread.php?t=24135
gì đây?