K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2018

T nghĩ đề nên cho thêm điều kiện: \(x;y\) nguyên

Giải

Ta có: \(x^2+y^2=4x-6y+12\Leftrightarrow x^2+y^2-4x+6y-12=0\)

\(\Rightarrow\left(x^2-4x+4\right)+\left(y+6y+9\right)-25=0\)

\(\Rightarrow\left(x-2\right)^2+\left(y+3\right)^2=25\)

Dễ nhận thấy: \(\left(x-2\right)^2\)\(\left(y+3\right)^2\) là bình phương của 1 số nguyên

\(\left(x-2\right)^2+\left(y+3\right)^2=25\) ta dễ dàng xác định được giá trị của chúng

\(\left(x-2\right)^2;\left(y+3\right)^2\in\left\{0;25\right\};\left(25;0\right);\left(9;16\right);\left(16;9\right)\)

Xét:\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\Leftrightarrow x=2\\\left(y+3\right)^2=25\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-8\end{matrix}\right.\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left(x-2\right)^2=25\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\\\left(y+3\right)^2=0\Leftrightarrow y=-3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left(x-2\right)^2=9\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\\\left(y+3\right)^2=16\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-7\end{matrix}\right.\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left(x-2\right)^2=16\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\\\left(y+3\right)^2=9\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-6\end{matrix}\right.\end{matrix}\right.\)

6 tháng 1 2021

a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)

\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)

\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)

Vậy MaxQ=10 khi x=2, y=-2

b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)

\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)

Vậy MaxA=14 khi x=-3

+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)

Vậy MaxB=5 khi x=-1/2, y=1/3

c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Vậy MinP=2 khi x=1, y=-3

3 tháng 10 2019

đề bài là j vậy bn?

3 tháng 10 2019

phân tích đa thức sau thành nhân tử

a: =-4(x^2-4x+5)

=-4(x^2-4x+4+1)

=-4(x-2)^2-4<=-4

Dấu = xảy ra khi x=2

b: =-x^2+4x-4-y^2-6y-9+25

=-(x-2)^2-(y+3)^2+25<=25

Dấu = xảy ra khi x=2 và y=-3

3 tháng 10 2019

a/ \(A=x^2+y^2-2x+6y+12\)

\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\)

Với mọi x, y ta có :

\(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2\ge0\)

\(\Leftrightarrow A\ge3\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

Vậy....

b/ \(B=-4x^2-9y^2-4x+6y+3\)

\(=-\left(4x^2+4x+1\right)-\left(9y^2+6y+1\right)+1\)

\(=-\left(2x+1\right)^2-\left(3y+1\right)^2+1\)

Với mọi x, y ta có :

\(\left\{{}\begin{matrix}\left(2x+1\right)^2\ge0\\\left(3y+1\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\left(2x+1\right)^2\le0\\-\left(3y+1\right)^2\le0\end{matrix}\right.\)

\(\Leftrightarrow-\left(2x+1\right)^2-\left(3y+1\right)^2\le0\)

\(\Leftrightarrow B\le1\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=-\frac{1}{3}\end{matrix}\right.\)

22 tháng 11 2017

1, a,= (x+2)^2/3.(x+2) = x+2/3

b,  = 3x.(x+4)/2x.(x+4) = 3/2

k mk nha

15 tháng 12 2019

B1 :

a) (2x - 1)2

22 tháng 1 2020

x2-xy=6x-5y-8

x.x-x.y-6.x+5.y= -8

22 tháng 1 2020

b, \(x^2+y^2=4x-6y+12\)

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)=-1\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2=-1\)

Sai đề nha bạn!!

28 tháng 12 2015

\(4x-x^2-12=-x^2+4x-4-8=-\left(x-4x+4\right)-8=-\left(x-2\right)^2-8\le8\)

=> GTLN của đa thức là 8

<=> x-2 = 0

<=> x = 2

\(x^2+y^2-x+6y+15\)

\(=x^2-2.x.\frac{1}{2}+\frac{1}{4}+y^2+2.y.3+9+\frac{23}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{23}{4}\ge\frac{23}{4}\)

=> GTNN của đa thức là 23/4

<=> x-1/2=0 và y+3=0

<=> x=1/2 và y=-3