Cho tam giác ABC vuông tại A AB bằng 21 cm AC bằng 28 cm đường phân giác AD Tính độ dài DB, DC, DA
MIK CẦN GẤP
HELP ME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có ΔABC vuông tại A
=>AB^2+AC^2=BC^2( định lí pytago)
=>BC^2=21^2+28^2
=1225
=>BC=35(cm)
+ có AD là đường phân giác
=>DC/DB=AC/AB
<=>DC+DB/DB=AC+AB/AB
<=>BC/DB=AC+AB/AB
<=>35/DB=21+28/21
=>35/DB=49/21
=>DB=35.21/49=15 cm
=>DC=BC-DB=35-15=20 cm
+ΔACH∞ΔBCA(g,g) vì
góc H=góc A=90 độ
góc C chung
=>AC/BC=CH/CA( hai cạnh tương ứng)
=>AC^2=CH.BC
=>CH=AC^2/BC=28^2/35=22,4 cm
ta có CH>CD(22,4>20)
=>D nằm giữa C và H
=>HD=CH-CD=22,4-20=2,4 cm
=>BH=BC-CH=35-22,4=12,6 cm
vậy BH=12,6cm
HD=2,4 cm
DC=20 cm
a: BC=5
Xet ΔABC có AD là phân giác
nên DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=5/7
=>DB=15/7; DC=20/7
c: \(AD=\dfrac{2\cdot3\cdot4}{3+4}\cdot cos45=\dfrac{12}{7}\sqrt{2}\left(cm\right)\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+28^2=1225\)
hay BC=35(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{BD}{21}=\dfrac{CD}{28}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{BC}{49}=\dfrac{35}{49}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{21}=\dfrac{5}{7}\\\dfrac{CD}{28}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=15\left(cm\right)\\CD=20\left(cm\right)\end{matrix}\right.\)
Vậy: BD=15cm; CD=20cm
a: BC=10cm
C=AB+BC+AC=6+8+10=24(cm)
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
c: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
a)Xét ΔHAB và ΔABC {AHBˆ=ABCˆCABˆ:chung ⇒ΔAHB∼ΔABC(g−g) b)Xét ΔABC ta có: BC2=AC2+AB2 BC2=162+122 BC2=400 BC=400−−−√=20cm Ta có ΔHAB~ΔABC(câu a) ⇒AHAC=ABBC⇔AH16=1220 ⇒AH=12.1620=9,6cm Xét ΔHBA ta được: AH2+BH2=AB2 BH2=AB2−AH2 BH2=122−9,62 BH2=51,84 ⇒BH=51,84−−−−−√=7,2cm c)Vì AD là đường phân giác của ΔABC nên: ABBD=ACCD⇔ABBC−CD=ACCD ⇔AB.CDCD.(BC−CD)=AC.(BC−CD)CD.(BC−CD) ⇔AB.CD=AC.(BC−CD) ⇔12.CD=16.20−16.CD ⇔12.CD+16.CD=320 ⇔28.CD=320 ⇔CD=32028≈11.43(cm) Độ dài cạnh BC là: BD=BC-CD BD=20−32028≈8,57(cm)
a) Theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có : AH2 = BH . CH
=> CH = AH2/BH = \(\dfrac{162}{25}=10,24\)
BC = BH + CH = 25 + 10,24 = 35,24
- Theo hệ thức liên hệ giữa cạnh góc vuông và hình chéo , ta có :
AB2 = BH.BC
=> AB\(\sqrt{\left(BH.BC\right)}\)
= \(\sqrt{\left(25.35,24\right)}\)
= \(\sqrt{881=29,68}\)
AC2 = HC.BC
=> AC = \(\sqrt{\left(CH.BC\right)}\)
= \(\sqrt{\left(10,24.35,24\right)=}\sqrt{\left(360,9\right)=18,99}\)
\(BC=\sqrt{21^2+28^2}=35\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên DB/AB=DC/AC
=>DB/3=DC/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{35}{7}=5\)
Do đó: DB=15cm; DC=20cm