Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Xét \(\Delta OAD,\Delta OCB\) có:
\(OA=OC\left(gt\right)\)
\(\widehat{O}\): góc chung
\(OD=OB\left(gt\right)\)
\(\Rightarrow\Delta OAD=\Delta OCB\left(c-g-c\right)\)
\(\Rightarrow AD=CB\) ( cạnh t/ứng )
\(\Rightarrow\widehat{B_1}=\widehat{D_1}\) ( góc t/ứng )
b) Ta có: OB = OD
OA = OC
\(\Rightarrow OB-OA=OD-OC\)
\(\Rightarrow AB=CD\)
Ta có: \(\widehat{A_1}+\widehat{B_1}+\widehat{E_1}=180^o\)
\(\widehat{C_1}+\widehat{E_2}+\widehat{D_1}=180^o\)
Mà \(\widehat{B_1}=\widehat{D_1}\) ( theo phần a ); \(\widehat{E_1}=\widehat{E_2}\) ( đối đỉnh )
\(\Rightarrow\widehat{A_1}=\widehat{C_1}\)
Xét \(\Delta EAB,\Delta ECD\) có:
\(\widehat{A_1}=\widehat{C_1}\left(cmt\right)\)
AB = CB ( cmt )
\(\widehat{B_1}=\widehat{D_1}\) ( theo phần a )
\(\Rightarrow\Delta EAB=\Delta ECD\left(g-c-g\right)\)
\(\Rightarrow EB=ED\) ( cạnh t/ứng )
c) Xét \(\Delta OBE,\Delta ODE\) có:
\(EB=ED\) ( theo phần b )
\(\widehat{B_1}=\widehat{D_1}\) ( theo phần a )
\(OB=OD\left(gt\right)\)
\(\Rightarrow\Delta OBE=\Delta ODE\left(c-g-c\right)\)
\(\Rightarrow\widehat{O_1}=\widehat{O_2}\)
\(\Rightarrow OE\) là tia phân giác của \(\widehat{xOy}\)
Vậy...
Giải:
a) ∆OAD và ∆OCB có:
OA= OC(gt)
∠O chung OB = OD (gt)
OAD = OCB (c.g.c) AD = BC
Nên ∆OAD=∆OCB (c.g.c) => AD=BC.
b) Ta có
∠A1 = 1800 – ∠A2
∠C1 = 1800 – ∠C2
∠A2 = ∠C2 do ΔOAD = ΔOCB (c/m trên)
⇒ ∠A1 = ∠C1
Ta có:
OB = OA + AB
OD = OC + CD
mà OB = OD, OA = OC
⇒ AB = CD
Xét ΔEAB = ΔECD có:
∠A1 = ∠C1 (c/m trên)
AB = CD (c/m trên)
∠B1 = ∠D1 (ΔOCB = ΔOAD)
⇒ ΔEAB = ΔECD (g.c.g)
c) Xét ΔOBE và ΔODE có:
OB = OD (GT)
OE chung
AE = CE (ΔAEB = ΔCED)
⇒ΔOBE = ΔODE (c.c.c)
⇒ ∠AOE = ∠COE
⇒ OE là phân giác của góc ∠xOy.
a) ∆OAD và ∆OCB có: OA= OC(gt) ∠O chung OB = OD (gt) OAD = OCB (c.g.c) AD = BC Nên ∆OAD=∆OCB(c.g.c) suy ra AD=BC. b) Ta có ∠A1 = 1800 – ∠A2 ∠C1 = 1800 – ∠C2 mµ ∠A2 = ∠C2 do ΔOAD = ΔOCB (c/m trên) ⇒ ∠A1 = ∠C1 Ta có OB = OA + AB OD = OC + CD mà OB = OD, OA = OC ⇒ AB = CD Xét ΔEAB = ΔECD có: ∠A1 = ∠C1 (c/m trên) AB = CD (c/m trên) ∠B1 = ∠D1 (ΔOCB = ΔOAD) ⇒ ΔEAB = ΔECD (g.c.g) c) Xét ΔOBE và ΔODE có: OB = OD (GT) OE chung AE = CE (ΔAEB = ΔCED) ⇒ΔOBE = ΔODE (c.c.c) ⇒ ∠AOE = ∠COE ⇒ OE là phân giác của góc ∠xOy tk mình nhé
Hình tự vẽ.
a) Xét tam giác OAD và tam giác OCB có :
OA = OC
Góc O chung
OB=OD
=> Tam giác OAD = tam giác OCB ( c-g-c)
=> AD = CB ( 2 cạnh tương ứng)
CM a) Xét t/giác OAD và t/giác OCB
có : OA = OC (gt)
góc O : chung
OD = OB (gt)
=> t/giác OAD = t/giác OCB (c.g.c)
=> AD = BC ( hai cạnh tương ứng)
b) Ta có : t/giác OAD= t/giác OCB (cmt)
=> góc B = góc D (hai góc tương ứng)
=> góc OAD = góc OCB (hai góc tương ứng) (1)
Mà \(\widehat{OAD}+\widehat{DAB}=180^0\) (2)
\(\widehat{OCB}+\widehat{BCD}=180^0\) (3)
Từ (1); (2);(3) suy ra góc DAB = góc GCD
Ta lại có : OA + AB = OB
OC + CD = OD
Mà OA = OC; OB = OD
=> AB = CD
Xét t/giác EAB và t/giác ECD
có góc B = góc D (cmt)
AB = CD (cmt)
góc EDB = góc ECD (cmt)
=> t/giác EAD = t/giác ECD (g.c.g)
c) Ta có : t/giác EAD = t/giác ECD (cmt)
=> AE = CE (hai cạnh tương ứng)
Xét t/giác OAE và t/giác OCE
có OA = OC (gt)
AE = CE (Cmt)
OE : chung
=> t/giác OAE = t/giác OCE (c.c.c)
=> góc AOE = góc EOC (hai góc tương ứng)
=> OE là tia p/giác của góc xOy
a/xét OBC và ODA:
-góc O chung
-OD=OB(gt)
-OA=OC(gt) => OBC=ODA =>AD=BC
b/ từ a/ =>gADO = gOBC và gOAD = gOCB =>gBAD=gBCD (bù với 2 g = nhau)
OA=OC và OD=OB => AB=CD
-xét tam giác EAB và ECD:
AB=CD
gBAD=gBCD
gADO=gOBC =>dpcm
c/b/=>ED=EB
xét OBE và ODE: ED=EB
gB=gD
OB=OD =>2 tg = nhau
=>gBOE=gDOE =>OE là p/g