1/3 - 2/3^2 + 3/3^2 - 4/3^4+ ... + 99/3^99 - 100 / 3^100 < 3/16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
k cho tôi đấy nhá An
Đặt A=\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+..+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
=>3A=\(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+..+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
+A=\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+..+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
=>4A= 1 - 1/3 + 1/3^2 - 1/3^3 +...+ 1/3^98 - 1/3^99 - 100/3^100
=>4A<1 - 1/3 + 1/3^2 - 1/3^3 +...+ 1/3^98 -1/3^99
=>4A<1-(1/3 -1/3^2+1/3^3-...-1/3^98+1/3^99)
Đặt B=1/3 -1/3^2+1/3^3-...-1/3^98+1/3^99
=>3B=1 - 1/3 +1/3^2 -... - 1/3^97 +1/3^98
=>4B=1+1/3^99>1
=>4B>1
=>B>1/4
=>-B<-1/4
=>1-B<1-1/4
=>4A<1-B<3/4
=>4A<3/4
=>A<3/4 : 4=3/16
=>A<3/16 (đpcm)
Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
=>\(\frac{1}{3}.A=\frac{1}{3^2}-\frac{2}{3^3}+\frac{3}{3^4}-\frac{4}{3^5}+...+\frac{99}{3^{100}}-\frac{100}{3^{101}}\)
=>\(A+\frac{1}{3}.A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}+\frac{1}{3^2}-\frac{2}{3^3}+\frac{3}{3^4}-\frac{4}{3^5}+...+\frac{99}{3^{100}}-\frac{100}{3^{101}}\)
=>\(\frac{4}{3}.A=\frac{1}{3}-\left(\frac{2}{3^2}-\frac{1}{3^2}\right)+\left(\frac{3}{3^3}-\frac{2}{3^3}\right)-\left(\frac{4}{3^4}-\frac{3}{3^4}\right)+...+\left(\frac{99}{3^{99}}-\frac{98}{3^{99}}\right)-\left(\frac{100}{3^{100}}-\frac{99}{3^{100}}\right)-\frac{100}{3^{101}}\)
=>\(\frac{4}{3}.A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}-\frac{100}{3^{101}}\)
Đặt \(B=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
=>\(\frac{1}{3}.B=\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3^5}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\)
=>\(B+\frac{1}{3}.B=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3^5}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\)
=>\(\frac{4}{3}.B=\frac{1}{3}-\frac{1}{3^{101}}\)
=>\(B=\frac{1}{3}:\frac{4}{3}-\frac{1}{3^{101}}:\frac{4}{3}\)
=>\(B=\frac{1}{3}.\frac{3}{4}-\frac{1}{3^{101}}.\frac{3}{4}\)
=>\(B=\frac{1}{4}-\frac{1}{3^{100}.4}\)
Lại có: \(\frac{4}{3}.A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}-\frac{100}{3^{101}}\)
=>\(\frac{4}{3}.A=B-\frac{100}{3^{101}}\)
=>\(\frac{4}{3}.A=\frac{1}{2}-\frac{1}{3^{100}.4}-\frac{100}{3^{101}}\)
=>\(\frac{4}{3}.A=\frac{1}{2}-\left(\frac{1}{3^{100}.4}+\frac{100}{3^{101}}\right)\)
=>\(\frac{4}{3}.A=\frac{1}{2}-\left(\frac{1}{3^{100}}.\frac{1}{4}+\frac{1}{3^{100}}.\frac{100}{3}\right)\)
=>\(\frac{4}{3}.A=\frac{1}{2}-\frac{1}{3^{100}}.\left(\frac{1}{4}+\frac{100}{3^{ }}\right)\)
=>\(\frac{4}{3}.A=\frac{1}{2}-\frac{1}{3^{100}}.\frac{403}{12}\)
Ta thấy: \(\frac{1}{3^{100}}.\frac{403}{12}<\frac{1}{3}.\frac{9}{12}=\frac{1}{3}.\frac{3}{4}=\frac{1}{4}\)
=>\(\frac{1}{3^{100}}.\frac{403}{12}<\frac{1}{4}\)
=>\(\frac{4}{3}.A=\frac{1}{2}-\frac{1}{3^{100}}.\frac{403}{12}<\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\)
=>\(\frac{4}{3}.A<\frac{1}{4}=>A<\frac{1}{4}:\frac{4}{3}=>A<\frac{3}{16}\)
=>\(A<\frac{3}{16}\)
Vậy \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}<\frac{3}{16}\)