Cho tam giác ABC,M là trung điểm của BC.Gọi E là một điểm bất kì trên đoạn MA,trên tia đối của tia MA lấy điểm D sao cho MD=ME.Chứng minh CE\(\perp\) AB
LÀM NHANH GIÚP MK NHA!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác BECD có
M là trung điểm của BC
Mlà trung điểm của ED
Do đó: BECD là hình bình hành
SUy ra: CE//BD
Đề này chưa đủ dữ kiện để chứng minh CE\(\perp\)AB nhé bạn
a) Xét ΔAHB vuông tại H và ΔDHB vuông tại D có
BH chung
AH=DH(gt)
Do đó: ΔAHB=ΔDHB(hai cạnh góc vuông)
b) Xét ΔAMB và ΔEMC có
AM=ME(gt)
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔEMC(c-g-c)
⇒\(\widehat{BAM}=\widehat{CEM}\)(hai góc tương ứng)
mà \(\widehat{BAM}\) và \(\widehat{CEM}\) là hai góc ở vị trí so le trong
nên AB//CE(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: ΔABH=ΔDBH(cmt)
nên AB=BD(hai cạnh tương ứng)(1)
Ta có: ΔABM=ΔECM(cmt)
nên AB=CE(hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra BD=CE(đpcm)
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
a: Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
b: Xét ΔMEB và ΔMFC có
ME=MF
\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMEB=ΔMFC
=>\(\widehat{MEB}=\widehat{MFC}\)
=>\(\widehat{MFC}=90^0\)
=>CF\(\perp\)AD
c: Xét tứ giác BFCE có
M là trung điểm chung của BC và FE
=>BFCE là hình bình hành
=>BF//CE và BF=CE
Ta có: BF//CE
B\(\in\)FG
Do đó: BG//CE
Ta có: BF=CE
BF=BG
Do đó: BG=CE
Xét tứ giác BGEC có
BG//EC
BG=EC
Do đó: BGEC là hình bình hành
=>BE cắt GC tại trung điểm của mỗi đường
mà H là trung điểm của BE
nên H là trung điểm của GC
=>G,H,C thẳng hàng
Hình tự vẽ
a,\(\Delta AMB\)và \(\Delta DMC\)có:
AM = DM (gt)
\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)
MB = MC (gt)
\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)
\(\Rightarrow\widehat{ABM}=\widehat{DCM}\)(2 góc tương ứng)
\(\Rightarrow AB//CD\)( vì có cặp góc so le trong bằng nhau )
b,hơi sai sai bn ơi
Xét tứ giác BECD có
M là trung điểm của BC
Mlà trung điểm của ED
Do đó: BECD là hình bình hành
SUy ra: CE//BD
Đề này chưa đủ dữ kiện để chứng minh CE\(\perp\)AB nhé bạn