K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2021

\(\left(\frac{5}{3}x+y\right)\left(y^2+y+3\right)=\frac{5}{3}x\left(y^2+y+3\right)+y\left(y^2+y+3\right)=\frac{5}{3}xy^2+\frac{5}{3}xy+5x+y^3+y^2+3y\)

7 tháng 9 2021

`(5/3x +y) (y^2 +y+3)`

`= 5/3 x (y^2 +y+3)+y (y^2 +y+3)`

`= 5/3x . y^2 + 5/3x . y + 5/3 x.3 + y . y^2 + y.y +3.y`

`= 5/3 xy^2 + 5/3 xy + 5x + y^3+y^2 +3y`

2 tháng 9 2019

 TL:

\(\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+x^2y+xy^2-yx^2-xy^2-y^3\)

\(=x^3-y^3\)

2 tháng 9 2019

     \(\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)

\(=\left(x^3+x^2y+xy^2\right)-\left(x^2y+xy^2+y^3\right)\)

\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3\)

\(=x^3-y^3\)

17 tháng 12 2023

a, \(x^3-2x-y^3+2y\) (sửa đề)

\(=\left(x^3-y^3\right)-\left(2x-2y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2-2\right)\)

b, \(\left(x-y\right)\left(x+y\right)-4zx+4yz\)

\(=\left(x-y\right)\left(x+y\right)-\left(4zx-4yz\right)\)

\(=\left(x-y\right)\left(x+y\right)-4z\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-4z\right)\)

Bạn xem lại đề câu a giúp mình nha!

4 tháng 8 2019

Đặt \(x+y-z=a;x-y+z=b;y+z-x=c\)

Ta có:\(A=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(A=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)

\(A=\left(a+b\right)^3+3\left(a+b\right)\cdot c\cdot\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(A=a^3+b^3+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(A=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(A=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Hay \(A=3\cdot2x\cdot2y\cdot2z\)

\(A=24xyz\)

17 tháng 12 2019

\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\left(\frac{y-x}{xy}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\frac{\left(x-y\right)^2}{x^2y^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2x^2y^2}{xy\left(x-y\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2xy}{\left(x-y\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}=\frac{-x^2+2xy-y^2}{\left(x-y\right)^2}\)

\(=-\frac{\left(x-y\right)^2}{\left(x-y\right)^2}=-1\)

15 tháng 8 2017

Đặt y-z=-[(x-y)+(z-x)]

Thay vào rồi cm nha bạn

10 tháng 8 2016

\(a,3x-6y=3\left(x-2y\right)\)

\(b,\frac{2}{5}x^2+5x^3+x^2y=x^2\left(\frac{2}{5}+5x+y\right)\)