Tim x biet :3x^2+6x>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-5\right)\left(2x+1\right)>0\)
<=> \(\hept{\begin{cases}x-5>0\\2x+1>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-5< 0\\2x+1< 0\end{cases}}\)
<=>\(\hept{\begin{cases}x>5\\x>\frac{-1}{2}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 5\\x< \frac{-1}{2}\end{cases}}\)
<=>\(\orbr{\begin{cases}x>5\\x< \frac{-1}{2}\end{cases}}\)
a, 3x2 - 6x > 0
=> 3x2 > 6x ( Với mọi x )
=> 3xx > 6x
=> 3x > 6 => x > 3
Vậy x > 3 là thỏa mãn yêu cầu
b, ( 2x - 3 ).( 2 - 5x ) \(\le\)0
=> 2x - 3 \(\le\)0 Hoặc 2 - 5x \(\le\)0
Trường hợp 1: 2x - 3 \(\le\)0
=> 2x \(\le\)3
=> x \(\le\)\(\frac{3}{2}\)( 1 )
Trường hợp 2: 2 - 5x \(\le\)0
=> 2 \(\le\)5x
=> x \(\le\frac{2}{5}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra:
x \(\le\frac{3}{2}\)Hoặc x\(\le\frac{2}{5}\)là thỏa mãn
Mà \(\frac{2}{5}< \frac{3}{2}\)suy ra x\(\le\)\(\frac{3}{2}\)Là thỏa mãn yêu cầu
Vậy ....
c, x2 - 4 \(\ge\)0
=> x2 \(\ge\)4
=> x2 \(\ge\)22
=> x \(\ge\)2
Vậy x\(\ge\)2 là thỏa mãn yêu cầu
~Haruko~
\(x\left(3x-1\right)+6x-2=0\)
\(\Leftrightarrow3x^2-x+6x-2=0\)
\(\Leftrightarrow3x^2+5x-2=0\)
\(\Leftrightarrow3x^2+6x-x-2=0\)
\(\Leftrightarrow3x\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-2\end{matrix}\right.\)
`(3x-5)(2x-1)-(x+2)(6x-1)=0`
`<=>(6x^2-3x-10x+5)-(6x^2-x+12x-2)=0`
`<=>6x^2-13x+5-6x^2-11x+2=0`
`<=>-24x+7=0`
`<=>-24x=-7`
`<=>x=7/24`
Vậy `S={7/24}`
a) \(x^3+3x^2+3x+2=0\)
<=> \(x^3+x^2+x+2x^2+2x+2=0\)
<=> \(x\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\)
<=> \(\left(x+2\right)\left(x^2+x+1\right)=0\)
tự làm
b) \(x^4-2x^3+2x-1=0\)
<=> \(\left(x^4-3x^3+3x^2-x\right)+\left(x^3-3x^2+3x-1\right)=0\)
<=> \(x\left(x^3-3x^2+3x-1\right)+\left(x^3-3x^2+3x-1\right)=0\)
<=> \(\left(x^3-3x^2+3x-1\right)\left(x+1\right)=0\)
<=> \(\left(x-1\right)^3\left(x+1\right)=0\)
tự làm
c) \(x^4-3x^3-6x^2+8x=0\)
<=> \(x\left(x^3-3x^2-6x+8\right)=0\)
<=> \(x\left[\left(x^3+x^2-2x\right)-\left(4x^2+4x-8\right)\right]=0\)
<=>\(x\left[x\left(x^2+x-2\right)-4\left(x^2+x-2\right)\right]=0\)
<=> \(x\left(x-4\right)\left(x^2+x-2\right)=0\)
<=> \(x\left(x-4\right)\left(x-1\right)\left(x+2\right)=0\)
tự làm
3x2+6x>0 =) 3x(x+2)>0=)3x>0 hoặc x+2 > 0 =)
x>0 hoặc x>-2