Cho số tự nhiên a = \(\left(2^9\right)^{2009}\), b là tổng các chữ số của a, c là tổng các chữ số của b, d là tổng các chữ số của c. Tính d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Số lớn nhất : 20000 , số nhỏ nhất : 10001
2) Đáp số : 999995 .
Gọi chữ số hàng chục là a thì hàng đơn vị là a+2 (ĐK: a<8, a khác 0) Ta có 10xa +a+2= 4x(a+a+2)+9 =>11xa+2= 8xa+17 => 3xa=15 => a=5. Số cần tìm là 57
Số nhỏ nhất thì phải ghi với các chữ số ít nhất.
25=9+8+7+1
vậy số cần tìm là 1789.
Số nhỏ nhất khi có ít chữ số nhất, giá trị từng chữ số lớn nhất có thể.
Hàng đơn vị là 9; hàng chục là 8; hàng trăm là 7. Vậy hàng nghìn là 1 để có tổng các chữ số bằng 25.
Số đó là: 1 789
âu 1:
Gọi số cần tìm là AB (với A và B là các chữ số). Theo đề bài, ta có phương trình:
AB = 2 × A × B
Để giải phương trình này, ta thực hiện các bước sau:
- Ta có A và B đều là các chữ số từ 1 đến 9, do đó AB là một số có hai chữ số từ 10 đến 99.
- Vì AB = 2 × A × B, nên A và B đều khác 0. Do đó, ta có thể giả sử A > B mà không mất tính tổng quát.
- Khi đó, ta có A < 5 (nếu A ≥ 5 thì AB ≥ 50, vượt quá giới hạn của số có hai chữ số).
- Với mỗi giá trị của A từ 1 đến 4, ta tính được giá trị tương ứng của B bằng cách chia AB cho 2A. Nếu B là một số nguyên từ 1 đến 9 thì ta đã tìm được một giá trị của AB.
Kết quả là AB = 16 hoặc AB = 36.
Vậy có hai số thỏa mãn điều kiện đề bài là 16 và 36.
Câu 2:
Số cần tìm có dạng ABC, với A, B, C lần lượt là chữ số hàng trăm, chục và đơn vị. Theo đề bài, ta có hai điều kiện:
- ABC chia hết cho 9.
- A + C chia hết cho 5.
Để tìm số lớn nhất thỏa mãn hai điều kiện này, ta thực hiện các bước sau:
- Vì ABC chia hết cho 9, nên tổng các chữ số của ABC cũng chia hết cho 9. Do đó, ta có A + B + C = 9k (với k là một số nguyên dương).
- Từ điều kiện thứ hai, ta suy ra A + C là một trong các giá trị 5, 10 hoặc 15.
- Nếu A + C = 5 thì B = 4 và C = 1. Như vậy, ta có ABC = 401, không chia hết cho 9.
- Nếu A + C = 10 thì B = 0 và tổng các chữ số của ABC là 10, do đó ABC chia hết cho 9. Ta có ABC = 990.
- Nếu A + C = 15 thì B = 0 và tổng các chữ số của ABC là 18, do đó ABC chia hết cho 9. Ta có ABC = 999.
Vậy số lớn nhất thỏa mãn điều kiện đề bài là 999.
Câu 3:
A. Giả sử hai số tự nhiên a và b có tổng không chia hết cho 2. Khi đó, a và b có cùng hay khác tính chẵn lẻ. Nếu a và b đều là số lẻ thì tổng của chúng là một số chẵn, mâu thuẫn với giả thiết. Do đó, a và b phải cùng tính chẵn. Khi đó, ta có thể viết a = 2m và b = 2n, với m và n là các số tự nhiên. Từ đó, ta có:
ab = 2m × 2n = 2(m + n)
Vì m + n là một số tự nhiên, nên ab chia hết cho 2.
B. Số 2006 không thể là tích của ba số tự nhiên liên tiếp vì ba số tự nhiên liên tiếp phải có dạng (n - 1), n, (n + 1) hoặc n
#include <bits/stdc++.h>
using namespace std;
long long n,t,x;
int main()
{
cin>>n;
t=0;
while (n>0)
{
x=n%10;
t=t+x;
n=n/10;
}
if (t%3==0) cout<<"Co";
else cout<<"Khong";
return 0;
}
Số tự nhiên lớn nhất có các chữ số khác nhau mà tổng của các số đó bằng 26 là số ?
Ta phân tích :
26 = 0 + 1 + 2 + 3 + 4 + 9 + 7
Số đó là :
9743210
nha