Cho ΔABC, M là trung điểm của BC. Kẻ BH ⊥ AM; CK ⊥ AM.
a, CMR: BH // CK và BH=CK
b, BK // CH và BK=CH
c, Gọi E là trung điểm của BK, F là trung điểm của CH. CMR: E,M,F thẳng hàng
d, CMR: ΔAEF cân
KHÔNG CẦN VẼ HÌNH CŨNG ĐƯỢC, XIN CẢM ƠN!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác vuông ABH và tam giác vuông MBH có
góc MBH = góc ABH (do BH là phân giác góc B)
HB chung
=> Tam giác vuông ABH = tam giác vuông MBH ( ch - gn )
b, Từ câu a, sẽ có HM = HA ( cạnh tương ứng)
=> H thuộc trung trực của AM(1)
Ta còn có BM = BA ( cạnh tương ứng )
=> B thuộc trung trực của AM (2)
Từ (1) và (2) suy ra BH là trung trực của AM
c, Xét tam giác BCN
có NM vuông góc với BC => NM là đường cao ứng với cạnh BC
có CA vuông góc với BN => CA là đường cao ứng với cạnh BN
mà chúng giao nhau ở H nên H là trực tâm
nên BH là đường cao ứng với cạnh CN
=> BH vuông góc với CN mà BH còn vuông góc với AM (BH là trung trực của AM)
=> CN song song với AM
d, Từ câu trên ta đã chứng minh BH vuông góc vói CN
a: Xét ΔAIB và ΔAIC có
AB=AC
IB=IC
AI chung
=>ΔAIB=ΔAIC
b: ΔABC cân tại A
mà AI là trung tuyến
nên AI vuông góc CB
c: Xét ΔABM và ΔACN co
AB=AC
góc ABM=góc ACN
BM=CN
=>ΔABM=ΔACN
=>AM=AN
Lời giải:
Kẻ $MT\perp AC$
Xét tam giác $ABH$ và $AMH$ có:
$\widehat{BAH}=\widehat{MAH}$
$\widehat{AHB}=\widehat{AHM}$
$AH$ chung
$\Rightarrow \triangle ABH=\triangle AMH$ (c.g.c)
$\Rightarrow BH=HM$
Tương tự ta cũng cm được: $\triangle AMH=\triangle AMT$ (ch-gn)
$\Rightarrow HM=MT$
Do đó: $BH=HM=MT (=\frac{1}{2}BM$)
Mà $BM=MC$ nên $MT=\frac{1}{2}MC$
Xét tam giác $MTC$ vuông tại $T$ có $MT=\frac{1}{2}MC$ nên $\widehat{C}=30^0$
Xét tam giác $AHC$ vuông tại $H$ có $\widehat{C}=30^0$ nên $\widehat{HAC}=60^0$
Mà $\widehat{HAC}=\frac{2}{3}\widehat{BAC}$ nên $\widehat{BAC}=90^0$
Còn lại $\widehat{B}=60^0$
a) Xét ΔBAD vuông tại A và ΔBHA vuông tại H có
\(\widehat{ABH}\) chung
Do đó: ΔBAD\(\sim\)ΔBHA(g-g)
Suy ra: \(\dfrac{BA}{BH}=\dfrac{BD}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BH\cdot BD\)(đpcm)
a, Xét tam giác AHB và tam giác AKC có
^A_chung
AB = AC
Vậy tam giác AHB ~ tam giác AKC ( ch-gn )
=> AH = AK ( 2 cạnh tương ứng )
b, Xét tam giác ABC cân tại A
có BH ; CK lần lượt là đường cao
mà BK giao CK = D vậy D là trực tâm
hay AD là đường cao thứ 3 trong tam giác
=> AD đồng thời là đường phân giác
c, Ta có AH = AK ; AB = AC
=> HK // BC ( Ta lét đảo _)
Không thể
Bởi vì A kéo xuống trung điểm BC sẽ chia góc A thành 2 phần bằng nhau, không biến nó thành 3 phần bằng nhau được nữa.
Xét 2 tam giác vuôngΔBHM và ΔCKM có:
Góc M1 = M2 ( đối đỉnh)
BM = CM (gt)
⇒ ΔBHM = ΔCKM ( cạnh huyền góc nhọn)
⇒ BH = CK ( 2 cạnh tương ứng)
Vì góc H = M :
⇒ BH // CK ( so le trong)
A B C H F E K M
a) Xét \(\Delta BMH,\Delta CMK\) có:
\(\widehat{BHM}=\widehat{CKM}\left(=90^{^O}\right)\)
\(BM=MC\) (M là trung điểm của BC)
\(\widehat{BMH}=\widehat{CMK}\)(đối đỉnh)
=> \(\Delta BMH=\Delta CMK\) (cạnh huyền - góc nhọn) (*)
=> \(\widehat{HBM}=\widehat{KCM}\) (2 góc tương ứng)
Mà thấy : 2 góc này ở vị trí so le trong
=> \(BH//CK\)
Từ (*) suy ra : \(BH=CK\)( 2 cạnh tương ứng)
b) Xét \(\Delta BKM,\Delta CHM\) có :
\(BM=MC\) (M là trung điểm của BC)
\(\widehat{BMK}=\widehat{CMH}\) (đối đỉnh)
\(HM=MK\) [suy ra từ (*)]
=> \(\Delta BKM=\Delta CHM\left(c.g.c\right)\) (**)
=> \(\widehat{KBM}=\widehat{HCM}\) (2 góc tương ứng)
Mà thấy : 2 góc này ở vị trí so le trong
=> \(BK//CH\left(đpcm\right)\)
Từ (**) suy ra : \(BK=CH\) (2 cạnh tương ứng)
c) Ta có : \(BK=CH\) (chứng minh trên -câub)
Lại có : \(\left\{{}\begin{matrix}CH=HF+FC\left(\text{F là trung điểm của CH}\right)\\BK=BE+EK\left(\text{E là trung điểm của BK}\right)\end{matrix}\right.\)
Suy ra : \(HF=FC=BE=EK\)
Xét \(\Delta HMF,\Delta KME\) có :
\(HF=EK\left(cmt\right)\)
\(\widehat{HMF}=\widehat{KME}\) (đối đỉnh)
\(HM=MK\) [từ (*)]
=> \(\Delta HMF=\Delta KME\left(c.g.c\right)\)
=> \(EM=FM\) (2 cạnh tương ứng)
=> M là trung điểm của EF
Do đó : E, M, F thẳng hàng
=> đpcm