Giải pt:\(\dfrac{1}{3-x}-\dfrac{1}{x+1}=\dfrac{x}{x-3}-\dfrac{\left(x-1\right)}{x^2-2x-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{x+3}+\dfrac{8}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x}{x^2-2x-3}\)
* x2 - 2x - 3 = x2- 3x + x - 3 = x(x-3 ) + ( x - 3) = ( x - 3 ) ( x + 1 )
\(\Leftrightarrow\dfrac{1}{x+3}+\dfrac{8}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x}{\left(x-3\right)\left(x+1\right)}\left(ĐKXĐ:x\ne\pm3;x\ne-1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)+8\left(x+3\right)=2x\left(x+3\right)\)
\(\Leftrightarrow x^2-2x+1+8x+24=2x^2+6x\)
\(\Leftrightarrow-x^2+25=0\)
\(\Leftrightarrow x^2-25=0\Leftrightarrow\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
Vậy \(S=\left\{-5;5\right\}\)
`1/(3-x)-1/(x+1)=x/(x-3)-(x-1)^2/(x^2-2x-3)(x ne -1,3)`
`<=>(-x-1)/(x^2-2x-3)-(x-3)/(x^2-2x-3)=(x^2+x)/(x^2-2x-3)-(x-1)^2/(x^2-2x-3)`
`<=>-x-1-x+3=x^2+x-x^2+2x-1`
`<=>-2x+2=3x-1`
`<=>5x=3`
`<=>x=3/5`
Vậy `S={3/5}`
`1/(x-2)-6/(x+3)=6/(6-x^2-x)(x ne 2,-3)`
`<=>(x+3)/(x^2+x-6)-(6x-12)/(x^2+x-6)+6/(x^2+x-6)=0`
`<=>x+3-6x+12+6=0`
`<=>-5x+21=0`
`<=>x=21/5`
Vậy `S={21/5}`
a) ĐKXĐ: \(x\notin\left\{3;-1\right\}\)
Ta có: \(\dfrac{1}{3-x}-\dfrac{1}{x+1}=\dfrac{x}{x-3}-\dfrac{\left(x-1\right)^2}{x^2-2x-3}\)
\(\Leftrightarrow\dfrac{-1\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}-\dfrac{x-3}{\left(x+1\right)\left(x-3\right)}=\dfrac{x\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}-\dfrac{x^2-2x+1}{\left(x-3\right)\left(x+1\right)}\)
Suy ra: \(-x-1-x+3=x^2+x-x^2+2x-1\)
\(\Leftrightarrow3x-1=-2x+2\)
\(\Leftrightarrow3x+2x=2+1\)
\(\Leftrightarrow5x=3\)
hay \(x=\dfrac{3}{5}\)(nhận)
Vậy: \(S=\left\{\dfrac{3}{5}\right\}\)
ĐKXĐ: ...
\(\left(\dfrac{x-1}{x+2}\right)^2-4\left(\dfrac{x+2}{x-3}\right)^2+3\left(\dfrac{x-1}{x-3}\right)=0\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x-1}{x+2}=a\\\dfrac{x+2}{x-3}=b\end{matrix}\right.\)
\(\Rightarrow a^2-4b^2+3ab=0\Leftrightarrow\left(a-b\right)\left(a+4b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\a+4b=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x-1}{x+2}-\dfrac{x+2}{x-3}=0\\\dfrac{x-1}{x+2}+\dfrac{4x+8}{x-3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x-3\right)-\left(x+2\right)^2=0\\\left(x-\right)\left(x-3\right)+4\left(x+2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
a) Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
ĐKXĐ: \(x\notin\left\{3;\dfrac{1}{5}\right\}\)
Ta có: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{3\left(3-x\right)}{\left(5x-1\right)\left(3-x\right)}+\dfrac{2\left(5x-1\right)}{\left(3-x\right)\left(5x-1\right)}=\dfrac{4}{\left(5x-1\right)\left(3-x\right)}\)
Suy ra: \(9-3x+10x-2=4\)
\(\Leftrightarrow7x+7=4\)
\(\Leftrightarrow7x=-3\)
hay \(x=-\dfrac{3}{7}\)
Vậy: \(S=\left\{-\dfrac{3}{7}\right\}\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x-3\right)\left(x+1\right)}\)
\(\Leftrightarrow x^2+x+x^2-3x=4x\)
\(\Leftrightarrow2x^2-6x=0\)
\(\Leftrightarrow2x\left(x-3\right)=0\)
=>x=0(nhận) hoặc x=3(loại)
đk : x khác -1 ; 3
\(\Rightarrow x\left(x+1\right)+x\left(x-3\right)=4x\Leftrightarrow2x^2-2x-4x=0\)
\(\Leftrightarrow2x^2-6x=0\Leftrightarrow2x\left(x-3\right)=0\Leftrightarrow x=0;x=3\left(ktm\right)\)
a) \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}=1-\dfrac{4}{\left(x-1\right)\left(x+3\right)}\)
ĐKXĐ \(x-1\ne0\) hoặc \(x+3\ne0\)
\(\Rightarrow x\ne1\) và \(x\ne-3\)
\(\dfrac{\left(3x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(2x+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}=\dfrac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\dfrac{4}{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)=\left(x-1\right)\left(x+3\right)-4\)
\(\Leftrightarrow3x^2+9x-x-3-\left(2x^2-2x+5x-5\right)=x^2+3x-x-3-4\)
\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5=x^2+3x-x-3-4\)
\(\Leftrightarrow9x-x+2x-5x-3x+x=3-5-3-4\)
\(\Leftrightarrow3x=-9\)
\(\Leftrightarrow x=-3\) (không thỏa ĐK)
Vậy PTVN
b) \(\dfrac{13}{\left(x-3\right)\left(2x+7\right)}+\dfrac{1}{2x+7}=\dfrac{6}{\left(x-3\right)\left(x+3\right)}\)
ĐKXĐ: \(x-3\ne0\Rightarrow x\ne3\)
\(x+3\ne0\Rightarrow x\ne-3\)
\(2x+7\ne0\Rightarrow2x\ne-7\Rightarrow x\ne\dfrac{-7}{2}\)
\(\dfrac{13\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}+\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}=\dfrac{6\left(2x+7\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}\)
\(\Leftrightarrow13\left(x+3\right)+\left(x-3\right)\left(x+3\right)=6\left(2x+7\right)\)
\(\Leftrightarrow13x+39+x^2+3x-3x-9=12x+42\)
\(\Leftrightarrow x^2+x-12=0\)
\(\Leftrightarrow x^2-3x+4x-12=0\)
\(\Leftrightarrow x\left(x-3\right)+4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)
\(\left\{{}\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\left(KTĐK\right)\\x=-4\left(TĐK\right)\end{matrix}\right.\)
Vậy S={-4}
a) \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}=1-\dfrac{4}{\left(x-1\right)\left(x+3\right)}\) ( đk: x ≠ 1 ; x ≠ -3 )
\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)=\left(x-1\right)\left(x+3\right)-4\)
\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5=x^2+3x-x-3-4\)
\(\Leftrightarrow3x=-9\)
\(\Rightarrow x=-3\left(KTM\right)\)
S = ∅
b) \(\dfrac{13}{\left(x-3\right)\left(2x+7\right)}+\dfrac{1}{2x+7}=\dfrac{6}{\left(x-3\right)\left(x+3\right)}\)
( đk: x ≠ ± 3 ; x ≠ \(\dfrac{-7}{2}\) )
\(\Leftrightarrow13\left(x+3\right)+\left(x-3\right)\left(x+3\right)=6\left(2x+7\right)\)
\(\Leftrightarrow13x+39+x^2-9=12x+42\)
\(\Leftrightarrow x^2-x-12=0\)
\(\Leftrightarrow x^2+3x-4x-12=0\)
\(\Leftrightarrow x\left(x+3\right)-4\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-4=0\\x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\left(TM\right)\\x=3\left(KTM\right)\end{matrix}\right.\)
S = \(\left\{4\right\}\)
giải pt sau \(\left(\dfrac{x+1}{x-2}\right)^2-3\left(\dfrac{2x-4}{x-4}\right)^2+\dfrac{x+1}{x-4}=0\)
ĐKXĐ: \(x\ne\left\{2;4\right\}\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x+1}{x-2}=a\\\dfrac{x-2}{x-4}=b\end{matrix}\right.\) \(\Rightarrow\dfrac{x+1}{x-4}=ab\)
Phương trình trở thành:
\(a^2-12b^2+ab=0\)
\(\Leftrightarrow a^2+4ab-3ab-12b^2=0\)
\(\Leftrightarrow a\left(a+4b\right)-3b\left(a+4b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a+4b\right)=0\Leftrightarrow\left[{}\begin{matrix}a-3b=0\\a+4b=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x+1}{x-2}-\dfrac{3\left(x-2\right)}{x-4}=0\\\dfrac{x+1}{x-2}+\dfrac{4\left(x-2\right)}{x-4}=0\end{matrix}\right.\)
Bạn tự quy đồng và hoàn thành phần còn lại nhé
a) Đk : \(x\ne0;\ne1\)
\(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=\dfrac{2\left(x^2+x-1\right)}{x\left(x+1\right)}\)
\(\Rightarrow\dfrac{x^2+3x}{x\left(x+1\right)}+\dfrac{x^2-x-2}{x\left(x+1\right)}-\dfrac{2x^2+2x-2}{x\left(x+1\right)}=0\)
\(\Rightarrow\dfrac{x^2+3x+x^2-x-2-2x^2-2x+2}{x\left(x-1\right)}=0\)
\(\Rightarrow\dfrac{0}{x-1}=0\)
=> Phương trình có vô số nghiệm x
b) Đk : \(x\ne2;x\ne3\)
\(\dfrac{2}{x-2}-\dfrac{x}{x+3}=\dfrac{5x}{\left(x-2\right)\left(x+3\right)}-1\)
\(\Rightarrow\dfrac{2x+6}{\left(x-2\right)\left(x+3\right)}-\dfrac{x^2-2x}{\left(x-2\right)\left(x+3\right)}-\dfrac{5x}{\left(x-2\right)\left(x+3\right)}+\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}\)
=0
\(\Rightarrow\dfrac{2x+6-x^2+2x-5x+x^2+x+6}{\left(x-2\right)\left(x+3\right)}=0\)
\(\Rightarrow\dfrac{12}{\left(x-2\right)\left(x+3\right)}=0\)
=> Phương trình vô nghiệm
c)
\(\Leftrightarrow\dfrac{x^2-x+1}{x^4+x^2+1}-\dfrac{x^2+x+1}{x^4+x^2+1}-\dfrac{1-2x}{x^4+x^2+1}=0\)
\(\Rightarrow\dfrac{x^2-x+1-x^2-x-1-1+2x}{x^4+x^2+1}=0\)
\(\Rightarrow\dfrac{-1}{x^4+x^2+1}=0\)
=> PTVN
d) Thôi tự làm đi, câu này dễ :Vvv
e)
\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)\)=40
\(\Rightarrow\left[\left(x+1\right)\left(x+5\right)\right]\cdot\left[\left(x+2\right)\left(x+4\right)\right]=40\)
\(\Rightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)
Đặt
\(x^2+6x+7=t\)
Phương trình tương đương
\(\left(t-1\right)\left(t+1\right)=40\)
\(t^2=41\)
\(\)\(t=\pm\sqrt{41}\)
Thay vào tìm x.
\(a,\dfrac{3}{2x-1}+1=\dfrac{2x-1}{2x+1};ĐKXĐ:x\ne\pm\dfrac{1}{2}\\ \Leftrightarrow\dfrac{3}{2x-1}-\dfrac{2x-1}{2x+1}+1=0\\ \Leftrightarrow\dfrac{3\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}-\dfrac{\left(2x-1\right)\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}+\dfrac{\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}=0\\ \Rightarrow3\left(2x+1\right)-\left(2x-1\right)^2+\left(2x-1\right)\left(2x+1\right)=0\\ \Leftrightarrow6x+3-\left(4x^2-4x+1\right)+\left(4x^2-1\right)=0\\ \Leftrightarrow6x+3-4x^2+4x-1+4x^2-1=0\\ \Leftrightarrow10x+1=0\\ \Leftrightarrow10x=-1\\ \Leftrightarrow x=-\dfrac{1}{10}\)
Vậy \(x\in\left\{-\dfrac{1}{10}\right\}\)
\(\dfrac{1}{3-x}-\dfrac{1}{x+1}=\dfrac{x}{x-3}-\dfrac{x-1}{x^2-2x-3}\)
\(\Leftrightarrow\dfrac{1}{3-x}-\dfrac{1}{x+1}=\dfrac{x}{x-3}-\dfrac{x-1}{\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{-1}{x-3}-\dfrac{1}{x+1}=\dfrac{x}{x-3}-\dfrac{x-1}{\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{-1\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}-\dfrac{1\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}=\dfrac{x\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}-\dfrac{x-1}{\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow-x+1-x+3=x^2+x-x+1\)
\(\Leftrightarrow-2x+4=x^2+1\)
\(\Leftrightarrow-2x+4-x^2-1=0\)
\(\Leftrightarrow-2x-x^2-3=0\)
Suy ra pt vô nghiệm