cho \(x=\dfrac{b^2+c^2-a^2}{2bc}\) và \(y=\dfrac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)
tính giá trị của P=x+y+xy
GIÚP MÌNH VỚI CÁC BẠN MỌI NGƯỜI MÌNH ĐANG CẦN LỜI GIẢI CỦA BAI NÀY GẤP LẮM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
=>\(\dfrac{bc}{abc}+\dfrac{ac}{bac}+\dfrac{ab}{abc}=0\)
=>\(\dfrac{ab+ac+bc}{abc}=0\)
=>ab+ac+bc=0
=>ab=-ac-bc
ac=-ab-bc
bc=-ab-ac
N=\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\)
N=\(\dfrac{1}{a^2+bc+bc}+\dfrac{1}{b^2+ca+ca}+\dfrac{1}{c^2+ab+ab}\)
N=\(\dfrac{1}{a^2-ab-ac+bc}+\dfrac{1}{b^2-ab-bc+ca}+\dfrac{1}{c^2-ac-bc+ab}\)
N=\(\dfrac{1}{a\left(a-b\right)-c\left(a-b\right)}+\dfrac{1}{b\left(b-a\right)-c\left(b-a\right)}+\dfrac{1}{c\left(c-a\right)-b\left(c-a\right)}\)
N=\(\dfrac{1}{\left(a-c\right)\left(a-b\right)}+\dfrac{1}{\left(b-c\right)\left(b-a\right)}+\dfrac{1}{\left(c-b\right)\left(c-a\right)}\)
N=\(\dfrac{b-c}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}-\dfrac{a-c}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}+\dfrac{a-b}{\left(b-c\right)\left(a-c\right)\left(a-b\right)}\)
N=\(\dfrac{b-c-a+c+a-b}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)=0
\(a,\left(\dfrac{1}{x-1}-\dfrac{x}{x-1^2}.\dfrac{x^2+1+x}{x+1}\right):\dfrac{1}{x^2-1}\\ =\left(\dfrac{1}{x-1}-\dfrac{x\left(x^2+1+x\right)}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{1}{x^2-1}\\ =\left(\dfrac{1\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{x^3+x+x^2}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{1}{x^2-1}\)
\(\dfrac{x+1-x^3-x-x^2}{\left(x-1\right)\left(x+1\right)}:\dfrac{1}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{\left(x+1-x^3-x-x^2\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=1-x^3-x^2\)
b,
thay x=\(\dfrac{1}{2}\) vào bt M ta được:
\(1-\left(\dfrac{1}{2}\right)^3-\left(\dfrac{1}{2}\right)^2=\dfrac{5}{8}\)
\(M=\dfrac{-1}{3}.\left(-\left(x^4\right)\right).\left(y^3\right)\)
Bậc của đơn thức M là : 7
Hệ số của M : \(\dfrac{-1}{3}\)
b) \(M=\dfrac{-1}{3}.\left(-\left(-2^4\right)\right).2^3\)
\(M=\dfrac{-1}{3}.\left(-16\right).8=\dfrac{128}{3}\)
Mink ko biết dúng hay sai nha @Cao Chu Thiên Trang
Bài 2:
a: Để (d) tạo với trục Ox một góc nhọn thì 1-2m>0
=>2m<1
=>m<1/2
b: y=(1-2m)x+m-1
=x-2mx+m-1
=>x-2mx+m-1-y=0
=>m(-2x+1)+x-y-1=0
Điểm mà (d) luôn đi qua có tọa độ là:
-2x+1=0 và x-y=1
=>x=1/2 và y=x-1=1/2-1=-1/2
c: \(d\left(O;d\right)=\dfrac{\left|\left(1-2m\right)\cdot0+\left(-1\right)\cdot0+m-1\right|}{\sqrt{\left(1-2m\right)^2+1}}=\dfrac{\left|m-1\right|}{\sqrt{\left(2m-1\right)^2+1}}\)
Để d lớn nhất thì \(\sqrt{\left(2m-1\right)^2+1}_{MIN}\)
=>m=1/2
a) ĐKXĐ: \(x\ne\pm2\)
b) \(A=\left(\dfrac{1}{x-2}-\dfrac{1}{x+2}\right)\cdot\dfrac{x^2-4x+4}{4}\)
\(=\dfrac{x+2-x+2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{\left(x-2\right)^2}{4}\)
\(=\dfrac{4\left(x-2\right)^2}{4\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x-2}{x+2}\)
c) Với \(x=4\) thoả mãn điều kiện \(x\ne\pm2\), nên thay \(x=4\) vào A, ta có:
\(A=\dfrac{4-2}{4+2}=\dfrac{2}{6}=\dfrac{1}{3}\)
a) A xác định \(\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)
b) \(A=\left(\dfrac{1}{x-2}-\dfrac{1}{x+2}\right)\cdot\dfrac{x^2-4x+4}{4}\)
\(A=\dfrac{x+2-x+2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{\left(x-2\right)^2}{4}\)
\(A=\dfrac{4\cdot\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)\cdot4}\)
\(A=\dfrac{x-2}{x+2}\)
c) Thay x = 4 ( thỏa mãn ĐKXĐ ), ta có :
\(A=\dfrac{4-2}{4+2}=\dfrac{2}{5}=\dfrac{1}{3}\)