K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 9 2021

- Với \(x=0\) không phải nghiệm

- Với \(x\ne0\) chia 2 vế cho \(x^2\)

\(\Rightarrow3\left(x^2+\dfrac{4}{x^2}\right)-2\left(x+\dfrac{2}{x}\right)-52=0\)

Đặt \(x+\dfrac{2}{x}=t\Rightarrow t^2=x^2+\dfrac{4}{x^2}+4\Rightarrow x^2+\dfrac{4}{x^2}=t^2-4\)

Pt trở thành:

\(3\left(t^2-4\right)-2t-52=0\)

\(\Leftrightarrow3t^2-2t-64=0\)

Nghiệm của pt này xấu quá

7 tháng 9 2021

Oh year

20 tháng 10 2019

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

Bàil: Giải phương trình sau a) 2x - 3 = 3 - x b) 7x - 4 = 3x + 12 c) 3x - 6 + x = 9 - x d) 10x - 12 - 3x = 6 + x Bài 2: Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a) 4x + 6 <= 2x - 2 b) 3x + 15 < 0 c) 3x - 3 > x + 5 d) x - 4 > - 2x + 5 Bài3: a) Một người đi xe máy từ 4 đến B với vận tốc 25km/h. Lúc về người đó đi với vận tốc 30km/h, nên thời gian về ít hơn thời gian đi là 20 phút. Tính AB ? b) Một người đi xe...
Đọc tiếp

Bàil: Giải phương trình sau a) 2x - 3 = 3 - x b) 7x - 4 = 3x + 12 c) 3x - 6 + x = 9 - x d) 10x - 12 - 3x = 6 + x Bài 2: Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a) 4x + 6 <= 2x - 2 b) 3x + 15 < 0 c) 3x - 3 > x + 5 d) x - 4 > - 2x + 5 Bài3: a) Một người đi xe máy từ 4 đến B với vận tốc 25km/h. Lúc về người đó đi với vận tốc 30km/h, nên thời gian về ít hơn thời gian đi là 20 phút. Tính AB ? b) Một người đi xe đạp từ A đến B với vận tốc 15 km/h. Sau đó quay về từ B về A với vận tốc 12 km/h. Cả đi lẫn về hết 4 giờ 30 phút. Tính quãng đường 4B Bài 4: Cho tam giác ABC vuông tại A với AB = 3cm AC= 4cm vẽ đường cao AE. a) Chứng minh rằng AABC đồng dạng với AEBA. b) Tia phân giác của góc ABC cắt AC tại F. Tính BF Bài 5: Cho tam giác ABC có AC = 8cm, AC = 16cm Gọi D và E là hai điểm lần lượt trên cạnh AB và AC sao cho BD = 2cm CE = 13cm Chứng minh rằng a. AAEB AADC b. AED= ABC, cho DE = 5cm Tính BC? C. AE AC AD AB

1

1:

a: =>3x=6

=>x=2

b: =>4x=16

=>x=4

c: =>4x-6=9-x

=>5x=15

=>x=3

d: =>7x-12=x+6

=>6x=18

=>x=3

2:

a: =>2x<=-8

=>x<=-4

b: =>x+5<0

=>x<-5

c: =>2x>8

=>x>4

22 tháng 3 2023

1. 4x-12=0

<=>4x=12

<=>x=3

2.  x.(x+1)-(x+2)(x+3)=7

<=>x2+x-x2-3x-2x-6=7

<=>x2-x2+x-2x-3x=7+6

<=>-4x=13

<=>x=\(-\dfrac{13}{4}\)

3.   7+2x=22-3x

<=>2x+3x=22-7

<=>5x=15

<=>x=3

4.  (x-1)-(2x-1)=9-x

<=>x-1-2x+1=9-x

<=>x-2x+x=9+1-1

<=>0x=9

vô nghiệm

21 tháng 4 2018

bai dai qua

21 tháng 4 2018

a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9

                           (9+x)= -9-x khi 9+x <0 hoặc x <-9

1)pt   9+x=2 với x >_ -9

    <=> x  = 2-9

  <=>  x=-7 thỏa mãn điều kiện (TMDK)

2) pt   -9-x=2 với x<-9

         <=> -x=2+9

             <=>  -x=11

                       x= -11 TMDK

 vậy pt có tập nghiệm S={-7;-9}

các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd

nhu cau o trên mk lam 9+x>_0    hoặc x>_0

với số âm thi -2x>_0  hoặc x <_ 0  nha

25 tháng 10 2023

a: \(4x^3+12=120\)

=>\(4x^3=108\)

=>\(x^3=27=3^3\)

=>x=3

b: \(\left(x-4\right)^2=64\)

=>\(\left[{}\begin{matrix}x-4=8\\x-4=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-4\end{matrix}\right.\)

c: (x+1)^3-2=5^2

=>\(\left(x+1\right)^3=25+2=27\)

=>x+1=3

=>x=2

d: 136-(x+5)^2=100

=>(x+5)^2=36

=>\(\left[{}\begin{matrix}x+5=6\\x+5=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-11\end{matrix}\right.\)

e: \(4^x=16\)

=>\(4^x=4^2\)

=>x=2

f: \(7^x\cdot3-147=0\)

=>\(3\cdot7^x=147\)

=>\(7^x=49\)

=>x=2

g: \(2^{x+3}-15=17\)

=>\(2^{x+3}=32\)

=>x+3=5

=>x=2

h: \(5^{2x-4}\cdot4=10^2\)

=>\(5^{2x-4}=\dfrac{100}{4}=25\)

=>2x-4=2

=>2x=6

=>x=3

i: (32-4x)(7-x)=0

=>(4x-32)(x-7)=0

=>4(x-8)*(x-7)=0

=>(x-8)(x-7)=0

=>\(\left[{}\begin{matrix}x-8=0\\x-7=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=8\\x=7\end{matrix}\right.\)

k: (8-x)(10-2x)=0

=>(x-8)(x-5)=0

=>\(\left[{}\begin{matrix}x-8=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=5\end{matrix}\right.\)

m: \(3^x+3^{x+1}=108\)

=>\(3^x+3^x\cdot3=108\)

=>\(4\cdot3^x=108\)

=>\(3^x=27\)

=>x=3

n: \(5^{x+2}+5^{x+1}=750\)

=>\(5^x\cdot25+5^x\cdot5=750\)

=>\(5^x\cdot30=750\)

=>\(5^x=25\)

=>x=2

7 tháng 3 2020

\(a)x^3-\frac{x}{49}=0\)

\(\Leftrightarrow x\left(x^2-\frac{1}{7^2}\right)=0\)

\(\Leftrightarrow x=0\)Hoặc \(x^2-\frac{1}{7^2}=0\)

TH1: \(x\left(x^2-\frac{1}{7^2}\right)=0\\ x=\frac{0}{x^2-\frac{1}{7^2}}\\ \Leftrightarrow x=0\)

TH2: \(x\left(x^2-\frac{1}{7^2}\right)=0\\ x^2-\frac{1}{7^2}=\frac{0}{x}\\ x^2=0+\frac{1}{7^2}\\ x^2=\frac{1}{7^2}\\ x^2=\left(\frac{1}{7}\right)^2\\ \Leftrightarrow x=\frac{1}{7}\)

Vậy \(x=0\)Hoặc \(x=\frac{1}{7}\)

7 tháng 3 2020

a) x3 - x/49 = 0

<=> x(x2 - 1/49) = 0

<=> x = 0 hoặc x2 - 1/49 = 0

<=> x = 0 hoặc x = +1/7

b) x2 - 7x + 12 = 0

<=> (x - 3)(x - 4) = 0

<=> x - 3 = 0 hoặc x - 4 = 0

<=> x = 3 hoặc x = 4

c) 4x2 - 3x - 1 = 0

<=> 4x2 + x - 4x - 1 = 0

<=> x(4x + 1) - (4x + 1) = 0

<=> (4x + 1)(x - 1) = 0

<=> 4x + 1 = 0 hoặc x - 1 = 0

<=> x = -1/4 hoặc x = 1

d) x3 - 2x - 4 = 0

<=> (x2 + 2x + 2)(x - 2) = 0

vì x2 + 2x + 2 khác 0 nên:

<=> x - 2 = 0

<=> x = 2

NV
13 tháng 8 2021

Ta có:

\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge\sqrt{9}+\sqrt{4}=5\)

\(3-4x-2x^2=5-2\left(x+1\right)^2\le5\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}3\left(x+1\right)^2=0\\5\left(x^2-1\right)^2=0\\2\left(x+1\right)^2=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

Vậy pt có nghiệm duy nhất \(x=-1\)

a: (3x-2)(4x+5)=0

=>3x-2=0 hoặc 4x+5=0

=>x=2/3 hoặc x=-5/4

b: (2,3x-6,9)(0,1x+2)=0

=>2,3x-6,9=0 hoặc 0,1x+2=0

=>x=3 hoặc x=-20

c: =>(x-3)(2x+5)=0

=>x-3=0 hoặc 2x+5=0

=>x=3 hoặc x=-5/2