x + y =a + b
x2 + y2 = a2 + b2
CMR: x3 + y3 = a3 + b3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x + y = a + b
=> (x + y)2 = (a + b)2
=> x2 + y2 + 2xy = a2 + b2 + 2ab
=> xy = ab
Lại có x + y = a + b
=> (x + y)3 = (a + b)3
=> x3 + 3x2y + 3xy2 + y3 = a3 + 3a2b + 3ab2 + b3
=> x3 + y3 + 3xy(x + y) = a3 + b3 + 3ab(a + b)
=> x3 + y3 = a3 + b3 (vì x + y = a + b ; xy = ab)
\(x+y=a+b\Leftrightarrow x^2+2xy+y^2=a^2+2ab+b^2\left(1\right)\)
\(x^3+y^3=a^3+b^3\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)=\left(a+b\right)^3-3ab\left(a+b\right)\)
mà do a+b=x+y nên \(ab=xy\) thay vào (1) ta có
\(x^2+y^2=a^2+b^2\)
Ta có:
\(a^3+2c=3ab\)
\(\Rightarrow\left(x+y\right)^3+2\left(x^3+y^3\right)=3\cdot\left(x+y\right)\left(x^2+y^2\right)\)
\(\Rightarrow\left(x^3+3x^2y+3xy^2+y^3\right)+2x^3+2y^3=3\left(x^3+xy^2+x^2y+y^3\right)\)
\(\Rightarrow x^3+3x^2y+3xy^2+y^3+2x^3+2y^3=3x^3+3xy^2+3xy^2+3y^3\)
\(\Rightarrow3x^3+3x^2y+3xy^2+3y^3=3x^3+3x^2y+3xy^2+3y^3\)
\(\Rightarrow\left(3x^3-3x^3\right)+\left(3x^2y-3x^2y\right)+\left(3xy^2-3xy^2\right)+\left(3y^3-3y^3\right)=0\)
\(\Rightarrow0=0\left(dpcm\right)\)
\(\Rightarrow0=0\left(\text{luôn đúng}\right)\)
Vậy, \(a^3+2c=3ab\)
11: \(2x^2-12xy+18y^2\)
\(=2\left(x^2-6xy+9y^2\right)\)
\(=2\left(x-3y\right)^2\)
12: \(\left(x^2+x\right)^2+3\left(x^2+x\right)+2\)
\(=\left(x^2+x+2\right)\left(x^2+x+1\right)\)
CMR :1,a2+b2=<a+b>2-2ab
2,a3+b3=<a+b>3-3ab.<a+b>
3,a3-b3=<a-b>3+3ab.<a+b>
Cho :a+b=1
Tính :A=a3+b3+3ab
2
Ta có:
VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)
=a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)
=a3+b3=VT(dpcm)
1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)
VP `=(a+b)(a^2-ab+b^2)`
`=a^3-a^2b+ab^2+a^2b-ab^2+b^3`
`=a^3+(a^2b-a^2b)+(ab^2-ab^2)+b^3`
`=a^3+b^3`
.
VP `=(a-b)(a^2+ab+b^2)`
`=a^3+a^2b+ab^2-a^2b-ab^2-b^3`
`=a^3+(a^2b-a^2b)+(ab^2-ab^2)-b^3`
`=a^3-b^3`
\(xy=\dfrac{\left(\left(x+y\right)^2-x^2-y^2\right)}{2}=\dfrac{\left(a^2+2ab+b^2-a^2-b^2\right)}{2}=ab\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=\left(a+b\right)^3-3\cdot ab\cdot\left(a+b\right)\)
\(=a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)\)
\(=a^3+b^3\)