K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2015

Gọi a là số cần tìm. 
a chia 6 dư 5 nên a + 1 chia hết cho 6 
a chia 5 dư 4 nên a + 1 chia hết cho 5 
a chia 4 dư 3 nên a + 1 chia hết cho 4 
a chia 3 dư 2 nên a + 1 chia hết cho 3 
a chia 2 dư 1 nên a + 1 chia hết cho 2 
Vậy a + 1 là một số chia hết cho 6; 5; 4; 3; 2, mà số nhỏ nhất chia hết cho 6; 5; 4; 3; 2 là 60 nên: 
a + 1 = 60 
a = 60 - 1 
a = 59 
Số cần tìm là 59

26 tháng 11 2015

ta có :

a chia 2 ,3,4,5,6,7,8,9,10 dư lần lượt là 1,2,3,4,5,6,7,8,9

=>a+1 chia hết cho 2,3,4,5,6,7,8,9,10

mà a nhỏ nhất nên a+1 nhỏ nhất

=>a+1 thuộc BCNN(2,3,4,5,6,7,8,9,10)

2=2

3=3

4=22

5=5

6=2.3

7=7

8=23

9=32

10=2.5

=>BCNN(2,3,4,5,6,7,8,9,10)=23.32.5.7=2520

=>a+1=2520

=>a=2519

22 tháng 2 2017

Gọi số cần tìm là a

a + 3 chia hết cho 5 ; 7 ; 9 

Số tự nhiên nhỏ nhất chia hết cho 5 ; 7 ; 9 là 315

Vậy a + 3 là 315

=> a = 312

3: \(\left\{{}\begin{matrix}a-1\in\left\{15;30;45;...\right\}\\a-3\in\left\{4;8;12;...\right\}\end{matrix}\right.\Leftrightarrow a=31\)

15 tháng 3 2016

Gọi số cần tìm là x.

Ta có: x-2 chia hết cho 5, x-4 chia hết cho 7, x-6 chia hết cho 9

=> x+3 chia hết cho 5, x+3 chia hết cho 7, x+3 chia hết cho 9

x+3 chia hết cho 5,7 và 9 nên x+3\(\in\)BC(5,7,9)={0;315;630;945;...}

Vì x nhỏ nhất nên x+3 nhỏ nhất

=>x+3 là BCNN(5,7,9)

x+3=315

x=312

15 tháng 3 2016

Đây là Toán Lớp 5 mà

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học...
Đọc tiếp

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.

Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.

Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.

Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?

Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.

Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.

Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.

0
2 tháng 3 2020

Bài 2: 

Gọi số đó là n

Theo bài ra ta có:

\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)

\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)

\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)

\(\Rightarrow n+27⋮11;4;9\)

Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)

\(\Rightarrow n=836-27=809\)

Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)