Tìm số tự nhiên nhỏ nhất chia cho 5 dư 2 , chia cho 7 dư 4 , chia cho 9 dư 6.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a là số cần tìm.
a chia 6 dư 5 nên a + 1 chia hết cho 6
a chia 5 dư 4 nên a + 1 chia hết cho 5
a chia 4 dư 3 nên a + 1 chia hết cho 4
a chia 3 dư 2 nên a + 1 chia hết cho 3
a chia 2 dư 1 nên a + 1 chia hết cho 2
Vậy a + 1 là một số chia hết cho 6; 5; 4; 3; 2, mà số nhỏ nhất chia hết cho 6; 5; 4; 3; 2 là 60 nên:
a + 1 = 60
a = 60 - 1
a = 59
Số cần tìm là 59
ta có :
a chia 2 ,3,4,5,6,7,8,9,10 dư lần lượt là 1,2,3,4,5,6,7,8,9
=>a+1 chia hết cho 2,3,4,5,6,7,8,9,10
mà a nhỏ nhất nên a+1 nhỏ nhất
=>a+1 thuộc BCNN(2,3,4,5,6,7,8,9,10)
2=2
3=3
4=22
5=5
6=2.3
7=7
8=23
9=32
10=2.5
=>BCNN(2,3,4,5,6,7,8,9,10)=23.32.5.7=2520
=>a+1=2520
=>a=2519
3: \(\left\{{}\begin{matrix}a-1\in\left\{15;30;45;...\right\}\\a-3\in\left\{4;8;12;...\right\}\end{matrix}\right.\Leftrightarrow a=31\)
Gọi số cần tìm là x.
Ta có: x-2 chia hết cho 5, x-4 chia hết cho 7, x-6 chia hết cho 9
=> x+3 chia hết cho 5, x+3 chia hết cho 7, x+3 chia hết cho 9
x+3 chia hết cho 5,7 và 9 nên x+3\(\in\)BC(5,7,9)={0;315;630;945;...}
Vì x nhỏ nhất nên x+3 nhỏ nhất
=>x+3 là BCNN(5,7,9)
x+3=315
x=312
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)