Tìm x biết : 2011 + 2010+2009+...+x=2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)
\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)
\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\) (1)
Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)
Nên biểu thức (1) xảy ra khi \(x+2013=0\)
\(x=-2013\)
b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\) (2)
Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)
Nên biểu thức (2) xảy ra khi \(x-2011=0\)
\(x=2011\)
\(\frac{x-2010-2011}{2009}+\frac{x-2009-2011}{2010}+\frac{x-2009-2010}{2011}=3\)
\(\Leftrightarrow\left(\frac{x-2010-2011}{2009}-1\right)+\left(\frac{x-2009-2011}{2010}-1\right)+\left(\frac{x-2009-2010}{2011}-1\right)=0\)
\(\Leftrightarrow\frac{x-6030}{2009}+\frac{x-6030}{2010}+\frac{x-6030}{2011}=0\)
\(\Leftrightarrow\left(x-6030\right)\left(\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}\right)\)
\(\Leftrightarrow x-6030=0\)(vì \(\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}>0\))
\(\Leftrightarrow x=6030\)
Vậy ................
\(pt\Leftrightarrow\frac{1-\sqrt{x-2009}}{x-2009}+\frac{1-\sqrt{y-2010}}{y-2010}+\frac{1-\sqrt{z-2011}}{z-2011}=-\frac{3}{4}\)
\(\Leftrightarrow\left(\frac{1}{x-2009}-\frac{\sqrt{x-2009}}{x-2009}+\frac{1}{4}\right)+\left(\frac{1}{y-2010}-\frac{\sqrt{y-2010}}{y-2010}+\frac{1}{4}\right)+\left(\frac{1}{z-2011}-\frac{\sqrt{z-2011}}{z-2011}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x-2009}-\frac{1}{\sqrt{x-2009}}+\frac{1}{4}\right)+\left(\frac{1}{y-2010}-\frac{1}{\sqrt{y-2010}}+\frac{1}{4}\right)+\left(\frac{1}{z-2011}-\frac{1}{\sqrt{z-2011}}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x-2009}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{y-2010}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{z-2011}}-\frac{1}{2}\right)^2=0\)
Xảy ra khi \(\hept{\begin{cases}\frac{1}{\sqrt{x-2009}}=\frac{1}{2}\\\frac{1}{\sqrt{y-2010}}=\frac{1}{2}\\\frac{1}{\sqrt{z-2011}}=\frac{1}{2}\end{cases}}\Rightarrow\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}}\Rightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}}\)
`(2011xx2020-1)/(2009xx2011+2010)`
`=((2009+1)xx2011-1)/(2009xx2011+2010)`
`=(2009xx2011+2011-1)/(2009xx2011+2010)`
`=(2009xx2011+2010)/(2009xx2011+2010)`
`=1`
\(\dfrac{2011.2010-1}{2009.2011+2010}\)
= \(\dfrac{2011.2009+2011-1}{2009.2011+2010}\)
= \(\dfrac{2011.2009+2010}{2009.2011+2010}\)
= 1
trừ 1 vào mỗi tỉ số,ta đc:
\(\frac{x-1}{2011}-1+\frac{x-2}{2010}-1-\frac{x-3}{2009}-1=\frac{x-4}{2008}-1\)
\(\Rightarrow\frac{x-1-2011}{2011}+\frac{x-2-2010}{2010}-\frac{x-3-2009}{2009}=\frac{x-4-2008}{2008}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}=\frac{x-2012}{2008}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
\(mà\frac{1}{2011}<\frac{1}{2010}<\frac{1}{2009}<\frac{1}{2008}\Rightarrow\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)
=>x-2012=0
=>x=2012
vậy x=2012
de 1996xy chia het cho 5 thi y phai bang 0 hoac 5 . de 1996xy chia het cho 2 thi y phai bang 0.ta co 1996x0 chia het cho 9 khi x ={2 ,11,...} .do x la so co mot chu so nen x=2.vay so thoa man de bai la 199620
do 2009/2010<1,2010/2011<1,2011/2012<1,2012/2013<1suy ra 2009/2010+2010/2011+2011/2012+2012/2013<4
2011+2010+...+x=2011
Đây là 1 dãy số giảm dần và x là số nhỏ nhất
Ta có thể viết lại phương trình như sau :
2011+2010+2009+......+0 + (-1)+(-2)+(-3)+.......+ x -2011=0
Ta có thể nhận thấy x = -2010