Tìm GTNN của biểu thức A = | x-102 | + | 2-x |
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=|x-102|+|2-x|\(\ge\)|x-102+2-x|=|-100|=100
vậy minA=100 <=>|x-102|=0 hoặc |2-x|=0
<=>x-102=0 hoặc 2-x=0
<=> x=102 hoặc x=2
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
\(+,x< -2\Rightarrow\left\{{}\begin{matrix}x+2< 0\\2x-3< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x+2\right|=-2-x\\\left|2x-3\right|=3-2x\end{matrix}\right.\Rightarrow1-3x=5\Rightarrow x=-\frac{4}{3}\left(\text{loại}\right)\)
\(+,x\ge\frac{3}{2}\Rightarrow\left\{{}\begin{matrix}2x-3\ge0\\x+2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|2x-3\right|=2x-3\\\left|x+2\right|=x+2\end{matrix}\right.\Rightarrow3x-1=5\Rightarrow x=2\left(\text{thoa man}\right)\)
\(+,-2\le x< \frac{3}{2}\Rightarrow\left\{{}\begin{matrix}x+2\ge0\\2x-3< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x+2\right|=x+2\\\left|2x-3\right|=3-2x\end{matrix}\right.\Rightarrow5-x=0\Rightarrow x=0\left(\text{thoa man}\right)\)
\(2.\text{ Ta co:}\left\{{}\begin{matrix}\left|x-102\right|\ge102-x\\\left|2-x\right|\ge x-2\end{matrix}\right.\Rightarrow A\ge102-x+x-2=100.\Rightarrow A_{min}=100.\text{dâu "=" xay ra}\Leftrightarrow\left\{{}\begin{matrix}102-x\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow2\le x\le102\)
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
a) \(A=6x-x^2-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)
Dấu \(=\)khi \(x-3=0\Leftrightarrow x=3\).
b) \(B=x^2-5x-2=x^2-2.\frac{5}{2}x+\left(\frac{5}{2}\right)^2-\frac{33}{4}=\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\ge-\frac{33}{44}\)
Dấu \(=\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\).
Muốn A có GTNN thì |x-102|+|2-x| phải có GTNN
\(\Rightarrow\)A co GTNN =-100 khi x=102