\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}}{2014+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}}\)
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ở tử số ta làm thế này
\(TS=\left(1+\frac{1}{2014}\right)+\left(1+\frac{1}{2013}\right)+\left(1+\frac{1}{2012}\right)+...+\left(1+\frac{2013}{2}\right)\)
\(TS=2015\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}+...+\frac{1}{2}\right)\)
\(\frac{TS}{MS}=2015\)
Xét Tử số của A ta có:
\(2014+\frac{2013}{2}+\frac{2012}{3}+....+\frac{2}{2013}=1+\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+....+\left(\frac{1}{2014}+1\right)\)\(TS=\frac{2015}{2}+\frac{2015}{3}+....+\frac{2015}{2014}+\frac{2015}{2015}\)
\(TS=2015.\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}\right)\)
\(A=\frac{2015.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)}{\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}\right)}=2015\)
tớ cần gấp !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Đặt phân thức trên là D
=> D=(1+1+1+1+...+1+2013/2+2012/3+...+2/2013+1/2014)/(1/2+1/3+1/4+...+1/2014)
=> D=(1+2013/2+1+2012/3+1+2011/4+...+1+2/2013+1+1/2014+1)/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=(2015/2+2015/3+2015/4+...+2015/2013+2015/2014+1)/(1/2+1/3+1/4+...+1/2014)
=> D=[2015*(1/2+1/3+1/4+1/5+....+1/2014)]/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=2015
có 2014/1+2013/2+2012/3+...+2/2013+1/2014=[1+(2013/2)]+[1+(2012/3)]+...+[1+(2/2013)]+[1+(1/2014)]+1
=2015/2+2015/3+...+2015/2014+2015/2015=2015.[1/2+1/3+..+1/2015)
vậy (1/2+1/3+...+1/2015).x=(1/2+1/3+...+1/2015).2015
x=2015
\(\text{Ta có :}P=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}}{2014+\frac{2013}{2}+...+\frac{1}{2014}}\)
\(\Rightarrow P=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}}{A}\)với \(A=2014+\frac{2013}{2}+...+\frac{1}{2014}\)
\(\Rightarrow A=1+\left(1+\frac{1}{2014}\right)+\left(1+\frac{1}{2013}\right)+\left(1+\frac{1}{2012}\right)+...+\left(1+\frac{2013}{2}\right)\)
\(\Rightarrow A=\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}+\frac{2015}{2015}\)
\(\Rightarrow A=2015.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+\frac{1}{2015}\right)\)
\(\text{Khi đó : }P=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}}{A}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}}{2015.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+\frac{1}{2015}\right)}\)
\(\Rightarrow P=\frac{1}{2015}\)