K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2018

\(\dfrac{2-x}{2015}-1=\dfrac{1-x}{2016}-\dfrac{x}{2017}\\ \Leftrightarrow\dfrac{2-x-2015}{2015}=\left(\dfrac{1-x}{2016}-1\right)+\left(1-\dfrac{x}{2017}\right)\\ \Leftrightarrow\dfrac{2017-x}{2015}-\dfrac{2017-x}{2016}-\dfrac{2017-x}{2017}=0\\ \Leftrightarrow\left(2017-x\right)\left(\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)=0\\ \Leftrightarrow2017-x=0\left(Vì\text{ }\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\ne0\right)\\ \Leftrightarrow x=2017\)

Vậy tập nghiệm của phương trình là \(S=\left\{2017\right\}\)

16 tháng 8 2021

Đặt \(a=\sqrt{x-2015};b=\sqrt{y-2016};c=\sqrt{z-2017}\left(a,b,c>0\right)\)

Khi đó phương trình trở thành: 

\(\dfrac{a-1}{a^2}+\dfrac{b-1}{b^2}+\dfrac{c-1}{c^2}=\dfrac{3}{4}\\ \Leftrightarrow\left(\dfrac{1}{4}-\dfrac{1}{a}+\dfrac{1}{a^2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{b}+\dfrac{1}{b^2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{c}+\dfrac{1}{c^2}\right)=0\\ \Leftrightarrow\left(\dfrac{1}{2}-\dfrac{1}{a}\right)^2+\left(\dfrac{1}{2}-\dfrac{1}{b}\right)^2+\left(\dfrac{1}{2}-\dfrac{1}{c}\right)^2=0\\ \Leftrightarrow a=b=c=2\\ \Leftrightarrow x=2019;y=2020;z=2021\)

Tick plz

 

5 tháng 3 2023

\(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)

\(\dfrac{x+4}{2014}+1+\dfrac{x+3}{2015}+1=\dfrac{x+2}{2016}+1+\dfrac{x+1}{2017}+1\)

\(\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)

\(\left(x+2018\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)=0\\ x+2018=0\\ x=-2018\)

 

8 tháng 3 2018

\(\dfrac{x+1}{2015}+\dfrac{x+2}{2016}=\dfrac{x+3}{2017}+\dfrac{x+4}{2018}\)

<=>\(\dfrac{x+1}{2015}-1+\dfrac{x+2}{2016}-1=\dfrac{x+3}{2017}-1+\dfrac{x+4}{2018}-1\)

<=>\(\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}=\dfrac{x-2014}{2017}+\dfrac{x-2014}{2018}\)

<=>\(\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}-\dfrac{x-2014}{2017}-\dfrac{x-2014}{2018}=0\)

<=>\(\left(x-2014\right)\left(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\right)=0\)

vì 1/2015+1/2016-1/2017-1/2018 khác 0

=>x-2014=0<=>x=2014

vậy.....................

chúc bạn học totts ^^

8 tháng 3 2018

\(\dfrac{x+1}{2015}+\dfrac{x+2}{2016}=\dfrac{x+3}{2017}+\dfrac{x+4}{2018}\)

\(\Leftrightarrow\dfrac{x+1}{2015}-1+\dfrac{x+2}{2016}-1=\dfrac{x+3}{x017}-1+\dfrac{x+4}{2018}-1\)

\(\Leftrightarrow\dfrac{x+1-2015}{2015}+\dfrac{x+2-2016}{2016}=\dfrac{x+3-2017}{2017}+\dfrac{x+4-2018}{2018}\)\(\Leftrightarrow\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}=\dfrac{x-2014}{2017}+\dfrac{x-2014}{2018}\)

\(\Leftrightarrow\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}-\dfrac{x-2014}{2017}-\dfrac{x-2014}{2018}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\right)=0\)

Vì: \(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\ne0\)

\(\Rightarrow x-2014=0\)

\(\Rightarrow x=2014\)

Vậy........

21 tháng 4 2018

\(\dfrac{x-1}{2017}+\dfrac{x-2}{2016}=\dfrac{x-3}{2015}+\dfrac{x-4}{2014}\)

\(\Rightarrow\dfrac{x-1}{2017}+\dfrac{x-2}{2016}-\dfrac{x-3}{2015}-\dfrac{x-4}{2014}=0\)

\(\Rightarrow\dfrac{x-1}{2017}-1+\dfrac{x-2}{2016}-1-\dfrac{x-3}{2015}+1-\dfrac{x-4}{2014}+1=0\)

\(\Rightarrow\left(\dfrac{x-1}{2017}-1\right)+\left(\dfrac{x-2}{2016}-1\right)-\left(\dfrac{x-3}{2015}-1\right)-\left(\dfrac{x-4}{2014}-1\right)=0\)

\(\Rightarrow\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}-\dfrac{x-2018}{2015}-\dfrac{x-2018}{2014}=0\)

\(\Rightarrow x-2018.\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)

\(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\ne0\)

Để \(x-2018.\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)

\(\Rightarrow x-2018=0\)

\(x=2018\)

21 tháng 4 2018

Ta có :

\(\dfrac{x-1}{2017}+\dfrac{x-2}{2016}=\dfrac{x-3}{2015}+\dfrac{x-4}{2014}\)

\(\Leftrightarrow\)\(\left(\dfrac{x-1}{2017}-1\right)+\left(\dfrac{x-2}{2016}-1\right)=\left(\dfrac{x-3}{2015}-1\right)+\left(\dfrac{x-4}{2014}-1\right)\) ( trừ 2 vế cho 2 )

\(\Leftrightarrow\)\(\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}=\dfrac{x-2018}{2015}+\dfrac{x-2018}{2014}\)

\(\Leftrightarrow\)\(\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}-\dfrac{x-2018}{2015}-\dfrac{x-2018}{2014}=0\)

\(\Leftrightarrow\)\(\left(x-2018\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)

\(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\ne0\)

Nên \(x-2018=0\)

\(\Rightarrow\)\(x=2018\)

Vậy \(x=2018\)

Chúc bạn học tốt ~

\(\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{2}{2016}+\dfrac{1}{2017}\)

\(=\left(\dfrac{2016}{2}+1\right)+\left(\dfrac{2015}{3}+1\right)+...+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{1}{2017}+1\right)+1\)

\(=\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\dfrac{2018}{2018}\)

\(=2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)\)

Theo đề, ta có: \(x=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}}=2018\)

13 tháng 12 2018

\(\dfrac{x+4}{2015}+\dfrac{x+3}{2016}=\dfrac{x+2}{2017}+\dfrac{x+1}{2018}\)

\(\Leftrightarrow\left(\dfrac{x+4}{2015}+1\right)+\left(\dfrac{x+3}{2016}+1\right)=\left(\dfrac{x+2}{2017}+1\right)+\left(\dfrac{x+1}{2018}+1\right)\)

\(\Leftrightarrow\dfrac{x+2019}{2015}+\dfrac{x+2019}{2016}=\dfrac{x+2019}{2017}+\dfrac{x+2019}{2018}\)

\(\Leftrightarrow\dfrac{x+2019}{2015}+\dfrac{x+2019}{2016}-\dfrac{x+2019}{2017}-\dfrac{x+2019}{2018}=0\)

\(\Leftrightarrow\left(x+2019\right)\left(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\right)=0\)

\(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\ne0\)

\(\Leftrightarrow x+2019=0\)

\(\Leftrightarrow x=-2019\)

Vậy...

16 tháng 7 2017

B = \(\dfrac{1}{\sqrt{x}+\sqrt{x+1}}+\dfrac{1}{\sqrt{x+1}+\sqrt{x+2}}+...+\dfrac{1}{\sqrt{x+2015}+\sqrt{x+2016}}\)

B = \(\dfrac{\sqrt{x}-\sqrt{x+1}}{x-x-1}+\dfrac{\sqrt{x+1}-\sqrt{x+2}}{x+1-x-2}+...+\dfrac{\sqrt{x+2015}-\sqrt{x+2016}}{x+2015-x-2016}\)

B = \(\dfrac{\sqrt{x}-\sqrt{x+1}}{-1}+\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}+...+\dfrac{\sqrt{x+2015}-\sqrt{x+2016}}{-1}\)

B = \(-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-...-\sqrt{2015}+\sqrt{2016}\)

B = \(-\sqrt{x}+\sqrt{2016}\)

Khi x = 2017

B = \(-\sqrt{2017}+\sqrt{2016}=\sqrt{2016}-\sqrt{2017}\)

16 tháng 7 2017

Gợi ý: sử dụng trục căn thức.

31 tháng 10 2017

\(\dfrac{x+1}{2017}+\dfrac{x+2}{2016}=\dfrac{x+3}{2015}-1\)

\(\Leftrightarrow\dfrac{x+1}{2017}+1+\dfrac{x+2}{2016}+1=\dfrac{x+3}{2015}-1+2\)

\(\Leftrightarrow\dfrac{x+100}{2017}+\dfrac{x+100}{2016}=\dfrac{x+100}{2015}\)

\(\Leftrightarrow\dfrac{x+100}{2017}+\dfrac{x+100}{2016}+\dfrac{x+100}{2015}=0\)

\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}+\dfrac{1}{2015}\right)=0\)

Do \(\dfrac{1}{2017}+\dfrac{1}{2016}+\dfrac{1}{2015}\ne0\) nên \(x+100=0\)

\(\Leftrightarrow x=\left(-100\right)\)

Vậy \(x=\left(-100\right)\)

31 tháng 10 2017

undefined

(Thêm ở cả 2 vế cùng một số để tạo ra nhân tử chung ở tử (x + 2018))