tìm giá trị nhỏ nhất của biểu thức
A= /x-10/+2018
B=/x-3/+/y+2/+17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=2^2=4\forall x\)
Ta có: \(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
\(\left|y+3\right|>=0\forall y\)
Do đó: \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4+0=4\forall x,y\)
=>\(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2018>=4+2018=2022\forall x,y\)
=>\(P>=2022\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y+3=0
=>\(\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)
ta có
\(\left|x-y\right|+\left|x+1\right|\ge0\)với mọi x,y
\(\Rightarrow\left|x-y\right|+\left|x+1\right|+2018\ge2018\)với mọi x,y
dấu = sảy ra <=>\(\left|x-y\right|+\left|x+1\right|=0\)mà \(\left|x-y\right|\ge0 VS \left|x+1\right|\ge0\)=>\(\left|x-y\right|=0 VS \left|x+1\right|=0\Leftrightarrow x-y=0 VS x+1=0\Leftrightarrow x=-1 VS y=-1\)
\(P=\left(|x-10|+5\right)^2+2|y-3|+2018\)
VÌ \(\left(|x-10|+5\right)^2\ge0 \left(1\right)\)
\(2|y-3|\ge0 \left(2\right)\)
TỪ (1);(2) \(\Rightarrow P=\left(|x-10|+5\right)^2+2|y-3|+2018\ge2018\)
DẤU "=" XẢY RA \(\Leftrightarrow\hept{\begin{cases}\left(|x-10|+5\right)^2=0\\2|y-3|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}|x-10|=-5\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=3\end{cases}}\)
VẬY Pmax=2018\(\Leftrightarrow\)x = 5 và y = 3
Giá trị tuyệt đối sao bằng âm được hả bạn???
Có: |x - 10| lớn hơn hoặc bằng 0 => |x - 10| + 5 lớn hơn hoặc bằng 5 => (|x - 10| + 5)2 lớn hơn hoặc bằn 25. Dấu "=" xảy ra khi x = 10 (*)
Cũng có: |y - 3| lớn hơn hoặc bằng 0 => 2|y - 3| lớn hơn hoặc bằng 0. Dấu "=" xảy ra khi y = 3 (**)
Từ (*) và (**) => Pmin = 25 + 0 + 2018 = 2043
Bài giải
a) Không tìm được GTLN
Tìm GTNN :
Do \(\left|x-2\right|\ge0\) \(\Rightarrow\text{ }\left|x-2\right|+2019\ge2019\) Dấu " = " xảy ra khi \(\left|x-2\right|=0\)\(\Rightarrow\text{ }x-2=0\text{ }\Rightarrow\text{ }x=2\)
Vậy GTNN của \(\left|x-2\right|+2019\) là 2019
b, GTLN :
Do \(\left|x+1\right|\ge0\text{ }\Rightarrow\text{ }2018-\left|x+1\right|\le2018\) Dấu " = " xảy ra khi \(\left|x+1\right|=0\text{ }\Rightarrow\text{ }x+1=0\text{ }\Rightarrow\text{ }x=-1\)
\(\Rightarrow\text{ }Max\text{ }2018-\left|x+1\right|=2018\)
GTNN không tìm được
c, Quên cách làm rồi !
a) A= |x+2| + 2019
Vì đằng trước |x+2| là dấu "+" nên biểu thức A phải tìm GTNN
Vì |x+2| luôn lớn hơn hoặc bằng 0 (ghi kí hiệu nha), với mọi x
nên |x+2| + 2019 luôn hơn hoặc bằng 2019, với mọi x
Khi dấu "=" xảy ra thì biểu thức A đạt GTNN là 2019
Khi đó: |x+2|=0
=> x+2 =0
=> x=-2
Vậy biểu thức A đạt GTNN là 2019 khi x= -2
b) B= 2018 - |x+1|
Vì đằng trước |x+1| là dấu "-" nên biểu thức B phải tìm GTLN
Vì -|x+1| luôn bé hơn hoặc bằng 0, với mọi x
nên 2018 -|x+1| luôn bé hơn hoặc bằng 0, với mọi x
Khi dấu "=" xảy ra thì biểu thức B đạt GTLN là 2018
Khi đó: |x+1| =0
=> x+1 =0
=> x=-1
Vậy biểu thức B đạt GTLN là 2018 khi x =-1
c) C = |x-3| + |y-2| +2020
Vì đằng trước |x-3| và |y-2| là dấu "+' nên biểu thức C phải tìm GTNN
Vì |x-3| luôn lớn hơn hoặc bằng 0, với mọi x
và |y-2| luôn lớn hơn hoặc bằng 0, với mọi y
=> |x-3| + |y-2| luôn lớn hơn hoặc bằng 0, với mọi x, y
=> |x-3| + |y-2| + 2020 luôn lớn hơn hoặc bằng 2020, với mọi x, y
Khi dấu "=" xảy ra thì biểu thức C đạt GTNN là 2020
Khi đó: |x-3|=0 và |y-2|=0
=> x-3=0 và y-2=0
=> x=3 và y=2
Vậy biểu thức Cđạt GTNN là 2020 khi x=3 và y=2
\(A=\left|x-10\right|+2018\)
Ta có :
\(\left|x-10\right|\ge0\forall x\)
⇒ \(\left|x-10\right|+2018\ge0+2018\)
⇒ \(A\ge2018\) Dấu "=" xảy ra ⇔ x - 10 = 0
⇔ x = 0+10 = 10
Vậy Min A = 0 ⇔ x = 10