K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2015

+) Tìm GTNN

Đặt t = x + y + z 

=> t2 = (x + y+ z)= x+ y+ z+ 2(xy + yz + zx)  = 3 + 2(xy + yz+ zx) => xy + yz + zx = (t2 - 3)/2

Khi đó, A = t + \(\frac{t^2-3}{2}\) = \(\frac{t^2+2t-3}{2}=\frac{\left(t+1\right)^2-4}{2}\ge\frac{0-4}{2}=-2\)

=> Min A = -2 

Dấu "=" xảy ra khi t = - 1 <=> x + y + z = - 1. kết hợp x2 + y+ z= 3 chọn x = 1;y = -1; z = -1

Vậy....

 

16 tháng 10 2015

tìm GTLN nè:

ab+bc+ca\(\le\)(a+b+c)^2/3

mặt khác :

(a+b+c)^2\(\le\)3(a^2+b^2+c^2)=9

=> A=<3+3=6 khi a=b=c=1

11 tháng 5 2017

\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\frac{2x+y+z}{2}\)

cmtt => GTLN

12 tháng 5 2017

Tìm max:

Ta có:

\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+xz}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

\(\le\frac{2x+y+z}{2}\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\sqrt{2y+zx}\le\frac{2y+z+x}{2}\left(2\right)\\\sqrt{2z+xy}\le\frac{2z+x+y}{2}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(A\le\frac{2x+y+z}{2}+\frac{2y+z+x}{2}+\frac{2z+x+y}{2}=2\left(x+y+z\right)=4\)

Dấu = xảy ra khi \(x=y=z=\frac{2}{3}\)

Tìm min:

Ta có: \(\hept{\begin{cases}\sqrt{2x+yz}\ge0\\\sqrt{2y+zx}\ge0\\\sqrt{2z+xy}\ge0\end{cases}}\)

\(\Rightarrow A\ge0\)

Dấu = xảy ra khi \(\left(x,y,z\right)=\left(-2,2,2;2,-2,2;2,2,-2\right)\)

3 tháng 11 2016

 1/ x + y + z = 3. Tìm Max P = xy + yz + xz 

Ta có: (x - y)² ≥ 0 <=> x² - 2xy + y² ≥ 0 <=> x² + y² ≥ 2xy 
hay 2xy ≤ x² + y² , dấu " = " xảy ra <=> x = y 
tương tự: 
+) 2yz ≤ y² + z² 
+) 2xz ≤ x² + z² 

cộng 3 vế của 3 bđt trên 
--> 2xy + 2yz + 2xz ≤ 2(x² + y² + z²) 
--> xy + yz + xz ≤ x² + y² + z² 
--> xy + yz + xz + 2xy + 2yz + 2xz ≤ x² + y² + z² + 2xy + 2yz + 2xz 
--> 3(xy + yz + xz) ≤ (x + y + z)² 
--> 3(xy + yz + xz) ≤ 3² 
--> xy + yz + xz ≤ 3 

Vậy MaxP = 3 ; Dấu " = " xảy ra <=> x = y = z = 1 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
2/ x² + ax + bc = 0 (1) 
x² + bx + ac =0 (2) 

Gọi x1 ; x2 là 2 nghiệm của pt (1) và x1 ; x3 là 2 nghiệm của pt (2) 
x1 là nghiệm chung của 2 pt 

x1 là nghiệm của (1) --> (x1)² + a(x1) + bc = 0 
x1 là nghiệm của (2) --> (x1)² + b(x1) + ac = 0 

trừ vế với vế 2 pt trên, ta được: (x1).(a - b) + c(b - a) = 0 
<=> (x1).(a - b) = c(a - b) 
<=> x1 = c 
thay vào (1) ta có: c² + ac + bc = 0 
--> c + a + b = 0 (do c ≠ 0 nên chia cả 2 vế cho c) 
--> a = - b - c ; b = - a - c ; a + b = -c 

thay a = - b - c vào (1): 
--> x² - (b + c)x + bc = 0 (1') 
Áp dụng Viet, ta có: x1 + x2 = b + c ; mà x1 = c --> x2 = b 

tương tự, thay b = - a - c vào (2): 
--> x² - (a + c)x + ac = 0 (2') 
Áp dụng Viet: x1 + x3 = a + c ; mà x1 = c --> x3 = a 

Vậy 
{ x2 + x3 = a + b 
{ x2.x3 = ab 
Theo định lý Viet đảo thì x2 và x3 là 2 nghiệm của pt: 
x² - (a + b)x + ab =0 
<=> x² + cx + ab =0 (do a + b = -c theo CM trên) --> ĐPCM 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
3/ Cho P(x) = x³ + ax² + bx + c . Giả sử P(1) = 5 ; P(2) = 10 . tính [P(12) - P(-9)] / 105 

Đặt Q(x) = P(x) - 5x 
Ta có: 
Q(1) = P(1) - 5.1 = 5 - 5 = 0 --> x = 1 là 1 nghiệm của Q(x) 
Q(2) = P(2) - 5.2 = 10 - 10 = 0 --> x = 2 cũng là 1 nghiệm của Q(x) 

Do P(x) là đa thức bậc 3 --> Q(x) = P(x) - 5x cũng là đa thức bậc 3 
--> Q(x) có 3 nghiệm, mà 2 nghiệm đã biết ở trên là x = 1 ; x = 2 

Q(x) được biểu diễn dưới dạng: 
Q(x) = (x - 1)(x - 2)(x - m) 
mà Q(x) = P(x) - 5x 
--> P(x) = Q(x) + 5x 
--> P(x) = (x - 1)(x - 2)(x - m) + 5x 

P(12) = (12 - 1)(12 - 2)(12 - m) + 5.12 = 11.10.(12 - m) + 60 
P(-9) = (-9 - 1)(-9 - 2)(-9 - m) + 5.(-9) = -10.11.(9 + m) - 45 

--> [ P(12) - P(-9) ] / 105 
= [ 11.10.(12 - m) + 60 + 10.11.(9 + m) + 45 ] / 105 
= [ 11.10(12 - m + 9 + m) + 105) ] / 105 
= (10.11.21 + 105) / 105 
= (2.5.11.21 + 105) / 105 
= (2.11.105 + 105) / 105 
= 22 + 1 = 23 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

31 tháng 10 2016

a) 

Theo bất đẳng thức Cauchy - Schwarz: 
(x² + y² + z²)(1 + 1 + 1) 
= (x² + y² + z²)(1² + 1² + 1²) ≥ (x + y + z)² 
<--> (x² + y² + z²)(1² + 1² + 1²) ≥ 3² = 9 
<--> 3(x² + y² + z²) ≥ 9 
<--> x² + y² + z² ≥ 3 
--> M ≥ 3 
--> min M = 3 khi x = y = z = 1

b) 
Ta có: (x - y)² ≥ 0 <=> x² - 2xy + y² ≥ 0 <=> x² + y² ≥ 2xy 
hay 2xy ≤ x² + y² , dấu " = " xảy ra <=> x = y 
tương tự: 
+) 2yz ≤ y² + z² 
+) 2xz ≤ x² + z² 

cộng 3 vế của 3 bđt trên 
--> 2xy + 2yz + 2xz ≤ 2(x² + y² + z²) 
--> xy + yz + xz ≤ x² + y² + z² 
--> xy + yz + xz + 2xy + 2yz + 2xz ≤ x² + y² + z² + 2xy + 2yz + 2xz 
--> 3(xy + yz + xz) ≤ (x + y + z)² 
--> 3(xy + yz + xz) ≤ 3² 
--> xy + yz + xz ≤ 3 

Vậy MaxP = 3 ; Dấu " = " xảy ra <=> x = y = z = 1 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
2/ x² + ax + bc = 0 (1) 
x² + bx + ac =0 (2) 

Gọi x1 ; x2 là 2 nghiệm của pt (1) và x1 ; x3 là 2 nghiệm của pt (2) 
x1 là nghiệm chung của 2 pt 

x1 là nghiệm của (1) --> (x1)² + a(x1) + bc = 0 
x1 là nghiệm của (2) --> (x1)² + b(x1) + ac = 0 

trừ vế với vế 2 pt trên, ta được: (x1).(a - b) + c(b - a) = 0 
<=> (x1).(a - b) = c(a - b) 
<=> x1 = c 
thay vào (1) ta có: c² + ac + bc = 0 
--> c + a + b = 0 (do c ≠ 0 nên chia cả 2 vế cho c) 
--> a = - b - c ; b = - a - c ; a + b = -c 

thay a = - b - c vào (1): 
--> x² - (b + c)x + bc = 0 (1') 
Áp dụng Viet, ta có: x1 + x2 = b + c ; mà x1 = c --> x2 = b 

tương tự, thay b = - a - c vào (2): 
--> x² - (a + c)x + ac = 0 (2') 
Áp dụng Viet: x1 + x3 = a + c ; mà x1 = c --> x3 = a 

Vậy 
{ x2 + x3 = a + b 
{ x2.x3 = ab 
Theo định lý Viet đảo thì x2 và x3 là 2 nghiệm của pt: 
x² - (a + b)x + ab =0 
<=> x² + cx + ab =0 (do a + b = -c theo CM trên) --> ĐPCM 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
3/ Cho P(x) = x³ + ax² + bx + c . Giả sử P(1) = 5 ; P(2) = 10 . tính [P(12) - P(-9)] / 105 

Đặt Q(x) = P(x) - 5x 
Ta có: 
Q(1) = P(1) - 5.1 = 5 - 5 = 0 --> x = 1 là 1 nghiệm của Q(x) 
Q(2) = P(2) - 5.2 = 10 - 10 = 0 --> x = 2 cũng là 1 nghiệm của Q(x) 

Do P(x) là đa thức bậc 3 --> Q(x) = P(x) - 5x cũng là đa thức bậc 3 
--> Q(x) có 3 nghiệm, mà 2 nghiệm đã biết ở trên là x = 1 ; x = 2 

Q(x) được biểu diễn dưới dạng: 
Q(x) = (x - 1)(x - 2)(x - m) 
mà Q(x) = P(x) - 5x 
--> P(x) = Q(x) + 5x 
--> P(x) = (x - 1)(x - 2)(x - m) + 5x 

P(12) = (12 - 1)(12 - 2)(12 - m) + 5.12 = 11.10.(12 - m) + 60 
P(-9) = (-9 - 1)(-9 - 2)(-9 - m) + 5.(-9) = -10.11.(9 + m) - 45 

--> [ P(12) - P(-9) ] / 105 
= [ 11.10.(12 - m) + 60 + 10.11.(9 + m) + 45 ] / 105 
= [ 11.10(12 - m + 9 + m) + 105) ] / 105 
= (10.11.21 + 105) / 105 
= (2.5.11.21 + 105) / 105 
= (2.11.105 + 105) / 105 
= 22 + 1 = 23 

31 tháng 10 2016

Theo bất đẳng thức Cauchy - Schwarz:
(x² + y² + z²)(1 + 1 + 1)
= (x² + y² + z²)(1² + 1² + 1²) ≥ (x + y + z)²
<--> (x² + y² + z²)(1² + 1² + 1²) ≥ 3² = 9
<--> 3(x² + y² + z²) ≥ 9
<--> x² + y² + z² ≥ 3
--> M ≥ 3
--> min M = 3 khi x = y = z = 1

31 tháng 10 2016

x + y + z = 3. Tìm Max P = xy + yz + xz

Ta có: (x - y)² ≥ 0 <=> x² - 2xy + y² ≥ 0 <=> x² + y² ≥ 2xy
hay 2xy ≤ x² + y² , dấu " = " xảy ra <=> x = y
tương tự:
+) 2yz ≤ y² + z²
+) 2xz ≤ x² + z²

cộng 3 vế của 3 bđt trên
--> 2xy + 2yz + 2xz ≤ 2(x² + y² + z²)
--> xy + yz + xz ≤ x² + y² + z²
--> xy + yz + xz + 2xy + 2yz + 2xz ≤ x² + y² + z² + 2xy + 2yz + 2xz
--> 3(xy + yz + xz) ≤ (x + y + z)²
--> 3(xy + yz + xz) ≤ 3²
--> xy + yz + xz ≤ 3

Vậy MaxP = 3 ; Dấu " = " xảy ra <=> x = y = z = 1

29 tháng 7 2017

Ta có: \(\sqrt{x^2+xy+y^2}=\sqrt{x^2+xy+\frac{y^2}{4}+\frac{3y^2}{4}}=\sqrt{\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}}\)

Tương tự ta viết lại A và áp dụng BĐT Mipcopxki :

\(A=\sqrt{\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}}+\sqrt{\left(y+\frac{z}{2}\right)^2+\frac{3z^2}{4}}+\sqrt{\left(z+\frac{x}{2}\right)^2+\frac{3x^2}{4}}\)

\(=\sqrt{\left(x+\frac{y}{2}\right)^2+\left(\frac{\sqrt{3}y}{2}\right)^2}+\sqrt{\left(y+\frac{z}{2}\right)^2+\left(\frac{\sqrt{3}z}{2}\right)^2}+\sqrt{\left(z+\frac{x}{2}\right)^2+\left(\frac{\sqrt{3}x}{2}\right)^2}\)

\(\ge\sqrt{\left(\frac{3\left(x+y+z\right)}{2}\right)^2+\left(\frac{\sqrt{3}\left(x+y+z\right)}{2}\right)^2}\)

\(\ge\sqrt{\left(\frac{3\cdot3}{2}\right)^2+\left(\frac{\sqrt{3}\cdot3}{2}\right)^2}=\sqrt{27}\)

Xảy ra khi x=y=z=1

14 tháng 1 2021

Áp dụng bất đẳng thức AM - GM:

\(P\ge3\sqrt[3]{\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}\).

Áp dụng bất đẳng thức AM - GM ta có:

\(xy+1=xy+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}\ge5\sqrt[5]{\dfrac{xy}{4^4}}\).

Tương tự: \(yz+1\ge5\sqrt[5]{\dfrac{yz}{4^4}};zx+1\ge5\sqrt[5]{\dfrac{zx}{4^4}}\).

Do đó \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)\ge125\sqrt[5]{\dfrac{\left(xyz\right)^2}{4^{12}}}\)

\(\Rightarrow\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{1}{4^{12}\left(xyz\right)^3}}\).

Mà \(xyz\le\dfrac{\left(x+y+z\right)^3}{27}=\dfrac{1}{8}\)

Nên \(\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{8^3}{4^{12}}}=125\sqrt[5]{\dfrac{1}{2^{15}}}=\dfrac{125}{8}\)

\(\Rightarrow P\ge\dfrac{15}{2}\).

Vậy...

 

 

 

17 tháng 1 2021

Áp dụng bất đẳng thức AM - GM:

P≥33√(xy+1)(yz+1)(zx+1)xyz.

Áp dụng bất đẳng thức AM - GM ta có:

xy+1=xy+14+14+14+14≥55√xy44.

Tương tự: yz+1≥55√yz44;zx+1≥55√zx44.

Do đó (xy+1)(yz+1)(zx+1)≥1255√(xyz)2412

⇒(xy+1)(yz+1)(zx+1)xyz≥1255√1412(xyz)3.

Mà xyz≤(x+y+z)327=18

Nên  (xy+1)(yz+1)(zx+1)xyz≥1255√83412=1255√1215=1258 

⇒P≥152.

2 tháng 2 2020

Tìm max:

Áp đụng bất đẳng thức AM-GM ta có:

\(\left(x+y\right)+z\le\frac{\left(x+y\right)^2+1}{2}+\frac{z^2+1}{2}=\frac{x^2+y^2+z^2+2xy+2}{2}=2+xy\)

Chứng minh tương tự ta có: \(2+xz\ge x+y+z;2+yz\ge x+y+z\)

Từ trên ta lại có: \(P=\frac{x}{2+yz}+\frac{y}{2+zx}+\frac{z}{2+xy}\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=1\\z=0\end{cases}}\)

\(\Rightarrow Max_P=1\)

Tìm Min

Áp BĐT Cauchy - Schwaz ta có:

\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)+3xyz}\left(1\right)\)

Đặt \(t=x+y+z\left(\sqrt{2}\le t\le\sqrt{6}\right)\)

Mặt khác ta có: \(9xyz\le\left(x+y+z\right)\left(xy+yz+xz\right)=\frac{t\left(t^2-2\right)}{2}\) 

Kết hợp với \(\left(1\right)\Rightarrow P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)+3xyz}\ge\frac{6t}{t^2+10}\) Luôn đúng với \(\sqrt{2}\le t\le\sqrt{6}\)

Dấu đẳng thức xảy ra chẳng hạn khi \(\hept{\begin{cases}x=\sqrt{2}\\y=z=0\end{cases}}\)

\(\Rightarrow Min_P=\frac{\sqrt{2}}{2}\)

Vậy ...........

7 tháng 2 2020

Bạn Băng Băng ơi, BD9T AM - GM là bất đẳng thức Cô - si đúng không bạn ?

30 tháng 8 2021

thêm x2+y2+z2=1 nha

thêm x2 + y+ z= 1 nha

      HT nha vinh