K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

\(x^2-6x+8=0\\ \Leftrightarrow x^2-4x-2x+8=0\\ \Leftrightarrow x\left(x-4\right)-2\left(x-4\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Vậy đa thức \(x^2-6x+8\) có 2 nghiệm số \(2\)\(4\)

18 tháng 3 2016

Nhẩm nghiệm ta lấy ước của hệ số tự do đem chia cho 1

thay vào rồi thì sẽ biết

2 tháng 7 2024

Từ a+b+c=0 ta có b= -(a+c) (*)
Thay (*) vào pt bậc 2 ta có
ax^2 - (a+c)x + c = 0
ax^2 - ax -cx + c = 0
ax(x -1)- c(x-1) = 0
(x -1)(ax-c) = 0
Vậy x-1=0 hay x=1
ax-c =0 hay x= c/a

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2  a) Xác định đa thức P(x) và Q(x)  b) Tìm nghiệm của đa thức P(x) và Q(x)  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
  a) Xác định đa thức P(x) và Q(x)
  b) Tìm nghiệm của đa thức P(x) và Q(x)
  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
   a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
   b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
   c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
   a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
   b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
7 tháng 4 2018

pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe

20 tháng 8 2017

\(A=444....444=4.111.....111=4.\frac{10^{2n}-1}{9}\)

\(B=888.....888=8.111.....111=8.\frac{10^n-1}{9}\)

\(\Rightarrow A+2B+4=\frac{4.10^{2n}-4+16.10^n-16+36}{9}=\frac{4.10^{2n}+16.10^n+16}{9}=\left(\frac{2.10^n+4}{3}\right)^2\)

là số hính phương (đpcm)

20 tháng 8 2017

2) Ta có :

\(x^4+6x^2+25=x^4+10x^2+25-4x^2=\left(x^2+5\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+5\right)\left(x^2+2x+5\right)\)(1)

\(3x^4+4x^2+28x+5=\left(3x^4+6x^3+x^2\right)+\left(-6x^3-12x^2-2x\right)+\left(15x^2+30x+5\right)\)

\(=x^2\left(3x^2+6x+1\right)-2x\left(3x^2+6x+1\right)+5\left(3x^2+6x+1\right)\)

\(=\left(x^2-2x+5\right)\left(3x^2+6x+1\right)\)(2)

Từ (1) ; (2) \(\Rightarrow f\left(x\right)=x^2-2x+5\Rightarrow f\left(2011\right)=2011^2-2.2011+5=4040104\)

ta có   \(x^2+6x+10=x^2+6x+9+1=\left(x^2+6x+9\right)+1\)

         \(=\left(x+3\right)^2+1\)

Vì \(\left(x+3\right)^2\ge0\)nên \(\left(x+3\right)^2+1\ge1\)

Vì \(\left(x+3\right)^2+1\ge1\)nên không có nghiệm

Vậy \(x^2+6x+10\)không có nghiệm

30 tháng 3 2018

\(x^2+6x+10\)

\(=x^2+3x+3x+3.3+1\)

\(=x\left(3+x\right)+3\left(3+x\right)+1\)

\(=\left(3+x\right)\left(3+x\right)+1\)

\(=\left(3x+1\right)^2+1\)

\(\text{Vi}:\left(3+x\right)^2\ge0\)

\(\Rightarrow\left(3+x\right)^2+x>1\)

=> Đa thức ko có nghiệm