K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2018

Ta có: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Leftrightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{a+a+b-b}{c+c+d-d}=\dfrac{2a}{2c}=\dfrac{a}{c}_{\left(1\right)}.\)

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b-a+b}{c+d-c+d}=\dfrac{a-a+b+b}{c-c+d+d}=\dfrac{2b}{2d}=\dfrac{b}{d}_{\left(2\right)}.\)

Từ \(_{\left(1\right)+\left(2\right)}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\) (t/c tỉ lệ thức).

\(\Rightarrowđpcm.\)

11 tháng 1 2018

a=b*k

c=d*k

thì b*k+b/b*k-b=b*(k+1)/b*(k-1)=k+1/k-1

thì d*k+d/d*k-d=d*(k+1)/d*(k-1)=k+1/k-1

nen suy ra a+b/a-b=c+d/c-d

26 tháng 4 2018

Vì : \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)\(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)

Hay: a+b/c+d

Và: a-b/c-d

cùng = a/c=b/d

vậy : \(\dfrac{a+b}{c+d}\) = \(\dfrac{a-b}{c-d}\) (đpcm)

26 tháng 4 2018

Violympic toán 7

31 tháng 5 2018

\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{2a}{2c}=\dfrac{a}{c}\) \(\left(1\right)\)

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b-a+b}{c+d-c+d}=\dfrac{2b}{2d}=\dfrac{b}{d}\) \(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\), ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

31 tháng 5 2018

Ta có: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

\(\rightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)

\(\rightarrow ac-ad+bc-bd=ac+ad-bc-bd\)

\(\rightarrow-ad+bc=ad-bc\)

\(\rightarrow bc+bc=ad+ad\)

\(\rightarrow2bc=2ad\)

\(\rightarrow bc=ad\)

\(\rightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)

Chúc bạn học tốt!

7 tháng 12 2017

\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Leftrightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{2a}{2c}=\dfrac{a}{c}\)(1)

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b-a+b}{c+d-c+d}=\dfrac{2b}{2d}=\dfrac{b}{d}\)(2)

Từ (1) và (2) ta có: \(\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)

14 tháng 7 2021

undefined

14 tháng 7 2021

\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{b}+1=\dfrac{c}{d}+1=>\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{b}-1=\dfrac{c}{d}-1=>\dfrac{a-b}{b}=\dfrac{c-d}{d}\)

\(\dfrac{a}{b}=\dfrac{c}{d}=>ad=cb=>ad+ac=cb+ac\)

\(=>a\left(c+d\right)=c\left(a+b\right)=>\dfrac{a}{c}=\dfrac{a+b}{c+d}=>\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

15 tháng 11 2021

chọn C

15 tháng 11 2021

C

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

a) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)

Ta có \(\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\)\( \Rightarrow d(a + b) = b(c + d)\)\( \Rightarrow ad + bd = bc + bd\)

\( \Rightarrow ad = bc\) (luôn đúng)

\( \Rightarrow \dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\) 

b) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)

Ta có: \(\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\)

\(\begin{array}{l} \Rightarrow d(a - b) = b(c - d)\\ \Leftrightarrow ad - bd = bc - bd\\ \Leftrightarrow ad = bc\end{array}\) ( luôn đúng)

Vậy \(\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\) 

c)  Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)

Ta có: \(\dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\)

\(\begin{array}{l} \Rightarrow a(c + d) = c(a + b)\\ \Leftrightarrow ac + ad = ac + bc\\ \Leftrightarrow ad = bc\end{array}\) (luôn đúng)

Vậy \(\dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\)

\(\Leftrightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{a}{b}=\dfrac{c}{d}\)

AH
Akai Haruma
Giáo viên
5 tháng 1 2022

Lời giải:

$\frac{a+b}{a-b}=\frac{c+d}{c-d}$

$\Rightarrow (a+b)(c-d)=(a-b)(c+d)$

$\Rightarrow ac-ad+bc-bd=ac+ad-bc-bd$

$\Rightarrow 2ad=2bc$

$\Rightarrow ad=bc$

$\Rightarrow \frac{a}{b}=\frac{c}{d}$ (đpcm)

12 tháng 6 2017

Giải:

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

\(\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\left(đpcm\right)\)

Vậy...

12 tháng 6 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) (1)

Thay (1) vào:

\(\dfrac{a+b}{a-b}=\dfrac{b.k+b}{b.k-b}=\dfrac{b.\left(k+1\right)}{b.\left(k-1\right)}=\dfrac{k+1}{k-1}\) (2)

\(\dfrac{c+d}{c-d}=\dfrac{d.k+d}{d.k-d}=\dfrac{d.\left(k+1\right)}{d.\left(k-1\right)}=\dfrac{k+1}{k-1}\) (3)

Từ (2) và (3) =>\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}=\dfrac{k+1}{k-1}\)