K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2021

Rút gọn biểu thức A=(1-1/3).(1-1/6).(1-1/10).(1-1/15).....(1-1/253)

 Hãy chứng minh A<2/5

Giải

A=(1-1/3).(1-1/6).(1-1/10).(1-1/15).....(1-1/253)

\(=\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)...\left(1-\dfrac{1}{253}\right)\\=\dfrac{2}{3}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{252}{253}\\ =\dfrac{4}{6}\cdot\dfrac{10}{12}\cdot...\cdot\dfrac{504}{506}\\ =\dfrac{1\cdot4}{2\cdot3}\cdot\dfrac{2\cdot5}{3\cdot4}\cdot...\cdot\dfrac{21\cdot24}{22\cdot23}\\ =\dfrac{1\cdot2\cdot3\cdot4^2\cdot5^2\cdot...\cdot21^2\cdot22\cdot23\cdot24}{2\cdot3^2\cdot4^2\cdot...\cdot22^2\cdot23}\\ =\dfrac{1\cdot24}{3\cdot22}=\dfrac{24}{66}< \dfrac{2}{5}\)

3 tháng 8 2023

1) \(A=\dfrac{x-1}{\sqrt{x}}:\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)

\(A=\dfrac{x-1}{\sqrt{x}}:\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)

\(A=\dfrac{x-1}{\sqrt{x}}:\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)

\(A=\dfrac{x-1}{\sqrt{x}}:\left(\dfrac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)

\(A=\dfrac{x-1}{\sqrt{x}}:\dfrac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(A=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-\sqrt{x}}\)

\(A=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(A=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\cdot\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(A=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

b) Ta có:

\(A\cdot\sqrt{x}=25\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\cdot\sqrt{x}=25\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=25\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=5^2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=5\\\sqrt{x}+1=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=16\\\sqrt{x}=-6\text{(vô lý)}\end{matrix}\right.\) 

c) Ta xét hiệu:

\(A-4=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}-4\)

\(A-4=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}-\dfrac{4\sqrt{x}}{\sqrt{x}}\)

\(A-4=\dfrac{x+2\sqrt{x}+1-4\sqrt{x}}{\sqrt{x}}\)

\(A-4=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}}\)

\(A-4=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\) 

Với \(x>0\) thì \(\left(\sqrt{x}-1\right)>0\) và \(\sqrt{x}>0\)

\(\Rightarrow\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\)

Nên A > 4 (đpcm)

1: \(A=\dfrac{x-1}{\sqrt{x}}:\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1+1-\sqrt{x}}\)

\(=\dfrac{\left(x-1\right)\cdot\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

2: A*căn x=25

=>(căn x+1)^2=25

=>căn x+1=5

=>x=16

3: \(A-4=\dfrac{\left(\sqrt{x}+1\right)^2-4\sqrt{x}}{\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\)

=>A>4

Bài 2: 

b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)

hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)

Bài 1: 

a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)

\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)

\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)

\(=75\cdot\left(-4\right)+603\)

\(=603-300=303\)

Bài 2: 

a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ

mà số nguyên tố chẵn duy nhất là 2

nên số lẻ còn lại là 599(thỏa ĐK)

Vậy: Hai số nguyên tố cần tìm là 2 và 599

4 tháng 4 2021

b,Gọi ƯCLN(21n+4,14n+3)=d

21n+4⋮d ⇒42n+8⋮d

14n+3⋮d ⇒42n+9⋮d

(42n+9)-(42n+8)⋮d

1⋮d ⇒ƯCLN(21n+4,14n+3)=1

Vậy phân số 21n+4/14n+3 là phân số tối giản

 

27 tháng 1 2023

loading...

9 tháng 2 2021

a ĐKXĐ \(a\ge0,a\ne\dfrac{1}{4},a\ne1\)

\(\Rightarrow P=1+\left(\dfrac{\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}\right)\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(1+\left(\dfrac{\left(-1\right)\left(2\sqrt{a}-1\right)}{\sqrt{a}-1}+\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{2\sqrt{a}-1}\)

\(1+\left(-1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{a+\sqrt{a}+1}\right)\sqrt{a}\)

\(1-\sqrt{a}+\dfrac{a\sqrt{a}+a}{a+\sqrt{a}+1}\) = \(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)+a\sqrt{a}+a}{a+\sqrt{a}+1}=\dfrac{1-a\sqrt{a}+a\sqrt{a}+a}{a+\sqrt{a}+1}=\dfrac{a+1}{a+\sqrt{a}+1}\)

b Xét hiệu \(P-\dfrac{2}{3}=\dfrac{a+1}{a+\sqrt{a}+1}-\dfrac{2}{3}=\dfrac{3a+3-2a-2\sqrt{a}-2}{a+\sqrt{a}+1}=\dfrac{a-2\sqrt{a}+1}{a+\sqrt{a}+1}=\dfrac{\left(\sqrt{a}-1\right)^2}{a+\sqrt{a}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}>0\) \(\Rightarrow P>\dfrac{2}{3}\) 

c Ta có \(P=\dfrac{\sqrt{6}}{\sqrt{6}+1}\Rightarrow\dfrac{a+1}{a+\sqrt{a}+1}=\dfrac{\sqrt{6}}{\sqrt{6}+1}\) \(\Rightarrow\left(a+1\right)\left(\sqrt{6}+1\right)=\sqrt{6}\left(a+\sqrt{a}+1\right)\Leftrightarrow a\sqrt{6}+a+\sqrt{6}+1=a\sqrt{6}+\sqrt{6a}+\sqrt{6}\)

\(\Leftrightarrow a-\sqrt{6a}+1=0\Leftrightarrow a-\sqrt{6a}+\dfrac{6}{4}-\dfrac{2}{4}=0\Leftrightarrow\left(\sqrt{a}-\dfrac{\sqrt{6}}{2}\right)^2=\dfrac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{a}=\dfrac{\sqrt{6}+1}{2}\\\sqrt{a}=\dfrac{1-\sqrt{6}}{2}\left(L\right)\end{matrix}\right.\) (Do \(\sqrt{a}\ge0\))  \(\Rightarrow a=\dfrac{\left(\sqrt{6}+1\right)^2}{4}=\dfrac{7+2\sqrt{6}}{4}\left(TM\right)\) 

Vậy...

5 tháng 3 2022

bạn chắc ko đấy ?