cho hệ phương trình: x+2y=2
mx-y=m(m là tham số)
a) giải là biện luận hệ pt đã cho theo m
b) trong trg hợp hệ pt có 1 nghiệm duy nhất (x,y)
tìm hệ thức liên hệ giữa x và y ko phụ thuộc vào m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
m x − y = 2 m 4 x − m y = m + 6 ⇔ y = m x − 2 m 4 x − m m x − 2 m = m + 6 ⇔ y = m x − 2 m x m 2 − 4 = 2 m 2 − m − 6
Hệ phương trình có nghiệm duy nhất khi m 2 − 4 ≠ 0 ⇔ m ≠ 2 ; − 2
Khi đó x = 2 m 2 − m − 6 m 2 − 4 = 2 m + 3 m − 2 m − 2 m + 2 = 2 m + 3 m + 2
⇒ y = m . 2 m + 3 m + 2 − 2 m = − m m + 2 ⇒ x = 2 m + 3 m + 2 y = − m m + 2 ⇔ x = 2 − 1 m + 2 y = − 1 + 2 m + 2 ⇔ 2 x = 4 − 2 m + 2 y = − 1 + 2 m + 2 ⇒ 2 x + y = 3
vậy hệ thức không phụ thuộc vào m là 2x + y = 3
Đáp án: D
Lần sau bạn nên ghi ra hệ đàng hoàng nhé, nhìn như thế khó đọc lắm.
\(\left\{{}\begin{cases}x+2y=2\\mx-y=m\end{cases}}\)
\(\left\{{}\begin{matrix}x+2y=2\\mx-y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-2y\\m\left(2-2y\right)-y-m=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-2y\\2m-2my-y-m=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-2y\\\left(-2m-1\right)y+m=0\left(.\right)\end{matrix}\right.\)
a, Hệ pt có 1 nghiệm duy nhất khi pt (.) có nghiệm duy nhất
\(\Rightarrow-2m-1\ne0\Leftrightarrow-2m\ne1\Leftrightarrow m\ne\dfrac{-1}{2}\)
Hệ pt có vô số nghiệm khi pt (.) có vô số nghiệm
\(\Rightarrow\left\{{}\begin{matrix}-2m-1=0\\m=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{-1}{2}\\m=0\end{matrix}\right.\)(vô lí)
Hệ pt vô nghiệm khi pt (.) vô nghiệm
\(\Rightarrow\left\{{}\begin{matrix}-2m-1=0\\m\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{-1}{2}\left(thoảman\right)\\m\ne0\end{matrix}\right.\)
\(\Rightarrow m=\dfrac{-1}{2}\)
b, Với m \(\ne\dfrac{-1}{2}\), ta có:
\(\left\{{}\begin{matrix}x=2-2y\\y=\dfrac{-m}{-2m-1}=\dfrac{2}{2m+1}\end{matrix}\right.\)