Một người dự định đi bộ một quãng đường với vận tốc không đổi là 5km/h, nhưng khi đi được nửa quãng đường thì được bạn đèo bằng xe đạp đi tiếp với vận tốc 12km/h do đó đến sớm hơn dự định là 28 phút. Hỏi nếu người đó đi bộ hết quãng đường thì mất bao lâu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi S1, S2 là quãng đường đầu và quãng đường cuối.
v1, v2 là vận tốc quãng đường đầu và vận tốc trên quãng đường cuối
t1, t2 là thời gian đi hết quãng đường đầu và thời gian đi hết quãng đường cuối
v3, t3 là vận tốc và thời gian dự định.
Theo bài ra ta có:
v3 = v1 = 5 Km/h; S1 = \(\frac{S}{3}\); S2 = \(\frac{2}{3}S\); v2 = 12 Km
Do đi xe nên người đến xớm hơn dự định 28ph nên:
\(t_3-\frac{28}{60}=t_1-t_2\) (1)
Mặt khác: \(t_3=\frac{S}{v_3}=\frac{S}{5}\Rightarrow S=5t_3\) (2)
\(\begin{cases}t_1=\frac{S_1}{v_1}=\frac{\frac{S}{3}}{5}=\frac{S}{15}\\t_2=\frac{S_2}{v_2}=\frac{\frac{2}{3}S}{12}=\frac{2}{36}S\end{cases}\)
\(\Rightarrow t_1+t_2=\frac{S}{15}+\frac{S}{18}\) (3)
Thay (2) vào (3) ta có:
\(\Rightarrow t_1+t_2=\frac{t_3}{3}+\frac{5t_3}{18}\)
So sánh (1) và (4) ta được:
\(t_3-\frac{28}{60}=\frac{t_3}{3}+\frac{5t_3}{18}\Leftrightarrow t_3=1,2h\)
Vậy: nếu người đó đi bộ thì phải mất 1h12ph.
28 phút = 28/60 = 7/15 giờ
Gọi S là quãng đường người đó cần đi
Thời gian người đó đi bộ là \(\frac{S}{3.5}=\frac{S}{15}\)
Thời gian người đó đi bằng xe đạp là \(\frac{2S}{3.12}=\frac{S}{18}\)
Thời gian nếu người đó đi bộ hết quãng đường là \(\frac{S}{5}\)
Ta có \(\frac{S}{5}-\left(\frac{S}{15}+\frac{S}{18}\right)=\frac{7}{15}\) Giải ra tìm được S thì sẽ tìm được thời gian người đó đi bộ hết quãng đường do biết vận tốc đi bộ.
Bạn tự làm nốt nhé
Tóm tắt
\(V_1=5km\)/\(h\)
\(V_2=12km\)/\(h\)
\(t'=28\)phút=\(\frac{7}{15}\)giờ.
_____________
S ?
Giải.
Gọi \(S_1;S_2\) lần lượt là quãng đường đi dự định, quãng đường đi xe đạp.
\(t_1;t_2\) lần lượt là thời gian đi quãng đường dự định và quãng đường đi xe đạp.
Theo giả thiết, ta có: \(S_1=S_2\Rightarrow V_1.t_1=V_2.t_2\Rightarrow5t_1=12t_2\Rightarrow t_2=\frac{5}{12}t_1\) và \(S_1+S_2=S\)
\(\Rightarrow2S_1=V_1.\left(t_1+t_2+t'\right)\Rightarrow2.V_1.t_1=V_1.\left(t_1+t_2+t'\right)\Rightarrow2t_1=t_1+t_2+t'\)
\(\Rightarrow t_1=\frac{5}{12}t_1+\frac{7}{15}\Rightarrow\frac{7}{12}t_1=\frac{7}{15}\Rightarrow t_1=\frac{4}{5}\left(h\right)\)
=> \(S=2.S_1=2.V_1.t_1=2.5.\frac{4}{5}=8\left(km\right)\)
Gọi quãng đường AB là x(x>0, đv;km)
thì nửa quãng đường đầu là \(\frac{x}{2}\)km
thời gian dự định ban đầu là \(\frac{x}{30}\)
thời gian đi nửa QĐ đầu là \(\frac{x}{2}:30=\frac{x}{60}\)
thời gian đi nữa QĐ sau là \(\frac{x}{2}:36=\frac{x}{72}\)
đổi 10p=\(\frac{1}{6}h\)
theo bài ra ta có PT \(\frac{x}{30}-\frac{x}{72}-\frac{x}{60}=\frac{1}{6}\)
\(\Leftrightarrow12x-5x-6x=60\)
\(\Leftrightarrow x=60\left(tm\right)\)
vạy QĐ AB=60km
vậy thời gian dự định là\(\frac{60}{30}=2h\)
Tóm tắt:
\(v=5km/h\\ v'=12km/h\\ t'=28'=\dfrac{7}{15}h\\ \overline{t=?}\)
Giải:
Gọi chiều dài nửa quãng đường là: \(s\left(km\right)\)
Thì thời gian đi hết quãng đường theo dự định là:
\(t=\dfrac{2s}{v}=\dfrac{2s}{5}\)
Nhưng trên thực tế thời gian đi hết quãng đường là:
\(t'=t_1+t_2=\dfrac{s}{v}+\dfrac{s}{v'}=\dfrac{s}{5}+\dfrac{s}{12}\)
Theo đề bài thì thời gian đi trên thực tế ít hơn thời gian dự định là \(28'\left(=\dfrac{7}{15}h\right)\), ta có phương trình:
\(\dfrac{s}{5}+\dfrac{s}{12}=\dfrac{2s}{5}-\dfrac{7}{15}\)
Giải phương trình:
\(\dfrac{s}{5}+\dfrac{s}{12}=\dfrac{2s}{5}-\dfrac{7}{15}\)
\(\Leftrightarrow\dfrac{12s}{60}+\dfrac{5s}{60}=\dfrac{24s}{60}-\dfrac{28}{60}\\ \Rightarrow12s+5s=24s-28\\ \Leftrightarrow24s-17s=28\\ \Leftrightarrow7s=28\\ \Leftrightarrow s=4\left(m\right)\)
Thời gian để đi hết quãng đường đó như dự định là:
\(t=\dfrac{2s}{v}=\dfrac{2.4}{5}=1,6\left(h\right)\)
Vậy thời gian để đi hết quãng đường theo dự định là:1,6 giờ
đúng ko bn