Tìm các cặp số nguyên x, y :
1. \(2^{x+1}.3^y=12^x\)
2. \(2^{x-1}.3^{y+1}=12^{x+y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2^{x+1}.\left(-3\right)^y=12^x\)
\(\Rightarrow2^{x+1}.\left(-3\right)^y=\left(3.4\right)^x\)
\(\Rightarrow2^{x+1}.\left(-3\right)^y=3^x.4^x\)
\(\Rightarrow2^{x+1}.\left(-3\right)^y=3^x.2^{2x}\)
\(\Rightarrow2^{x+1}.\left(-1\right)^y.3^y=3^x.2^{2x}\)
\(\Rightarrow\left[{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=y=1\end{matrix}\right.\)
Vậy x=1 , y=1
Giải:
a) \(\dfrac{-5}{8}=\dfrac{x}{16}\)
\(\Rightarrow x=\dfrac{16.-5}{8}=-10\)
\(\dfrac{3x}{9}=\dfrac{2}{6}\)
\(\Rightarrow3x=\dfrac{2.9}{6}=3\)
\(\Rightarrow x=1\)
b) \(\dfrac{x+3}{15}=\dfrac{1}{3}\)
\(\Rightarrow x+3=\dfrac{1.15}{3}=5\)
\(\Rightarrow x=2\)
\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
\(\Rightarrow2x+1=\dfrac{6.7}{2}=21\)
\(\Rightarrow x=10\)
c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\)
\(\Rightarrow\dfrac{4}{x-6}=\dfrac{-12}{18}\)
\(\Rightarrow x-6=\dfrac{18.4}{-12}=-6\)
\(\Rightarrow x=0\)
\(\Rightarrow\dfrac{y}{24}=\dfrac{-12}{18}\)
\(\Rightarrow y=\dfrac{-12.24}{18}=-16\)
\(\dfrac{3-x}{-12}=\dfrac{16}{y+1}=\dfrac{192}{-72}\)
\(\Rightarrow\dfrac{3-x}{-12}=\dfrac{192}{-72}\)
\(\Rightarrow3-x=\dfrac{192.-12}{-72}=32\)
\(\Rightarrow x=-29\)
\(\Rightarrow\dfrac{16}{y+1}=\dfrac{192}{-72}\)
\(\Rightarrow y+1=\dfrac{16.-72}{192}=-6\)
d) \(\dfrac{-2}{3}< \dfrac{x}{5}< \dfrac{-1}{6}\)
\(\Rightarrow\dfrac{-20}{30}< \dfrac{6x}{30}< \dfrac{-5}{30}\)
\(\Rightarrow6x\in\left\{-18;-12;-6\right\}\)
\(\Rightarrow x\in\left\{-3;-2;-1\right\}\)
\(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
\(\Rightarrow\dfrac{-8}{40}\le\dfrac{5x}{40}\le\dfrac{10}{40}\)
\(\Rightarrow5x\in\left\{-5;0;5;10\right\}\)
\(\Rightarrow x\in\left\{-1;0;1;2\right\}\)
e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\)
\(\Rightarrow\dfrac{x+46}{20}=x+\dfrac{2}{5}\)
\(\Rightarrow\dfrac{x+46}{20}=\dfrac{5x+2}{5}\)
\(\Rightarrow5.\left(x+46\right)=20.\left(5x+2\right)\)
\(\Rightarrow5x+230=100x+40\)
\(\Rightarrow5x-100x=40-230\)
\(\Rightarrow-95x=-190\)
\(\Rightarrow x=-190:-95\)
\(\Rightarrow x=2\)
\(y\dfrac{5}{y}=\dfrac{86}{y}\)
\(\Rightarrow y+\dfrac{5}{y}=\dfrac{86}{y}\)
\(\Rightarrow\dfrac{y^2+5}{y}=\dfrac{86}{y}\)
\(\Rightarrow y^2+5=86\)
\(\Rightarrow y^2=86-5\)
\(\Rightarrow y^2=81\)
\(\Rightarrow\left[{}\begin{matrix}y=9\\y=-9\end{matrix}\right.\)
Chúc bạn học tốt!
S=1+3+32+34+........+32006
3S= 3 +32+33+...+32006+32007
3S-S= 3 +32+33+...+32006+32007 - 1-3-32-34-........-32006
2S= -1+32007 => S=\(\frac{-1+3^{2007}}{2}\)
x.y +12 =x+y -> x.y-x-y =-12
-> x.y-x-y+1=-12+1
x.(y-1)-y+1 =-11
(y-1).(x-1) =-11=(-1).11= (-11).1
+ Nếu y-1 = -1 -> y=0 ; x=11+1=12
+ Nếu y-1= -11 -> y = -10 ; x= 1+1 =2
Vậy x=12, y=0 và x=2 ; y =-10 là 2 cặp số cần tìm
a) ( x - 1 ) . ( y + 2 ) = 7
Lập bảng ta có :
x-1 | 1 | 7 | -1 | -7 |
y+2 | 7 | 1 | -7 | -1 |
x | 2 | 8 | 0 | -6 |
y | 5 | -1 | -8 | -3 |
b) x . ( y - 3 ) = -12
Lập bảng ta có :
y-3 | 12 | -12 | 2 | -2 | -3 | -4 |
x | -1 | 1 | -6 | 6 | 4 | 3 |
y | 15 | -9 | 5 | 1 | 0 | -1 |
c) xy - 3x - y = 0
x . ( y - 3 ) - y = 0
x . ( y - 3 ) - y + 3 = 3
x . ( y - 3 ) - ( y - 3 ) = 3
( x - 1 ) . ( y - 3 ) = 3
Lập bảng ta có :
x-1 | 3 | 1 | -1 | -3 |
y-3 | 1 | 3 | -3 | -1 |
x | 4 | 2 | 0 | -2 |
y | 4 | 6 | 0 | 2 |
d) xy + 2x + 2y = -16
x . ( y + 2 ) + 2y = -16
x . ( y + 2 ) + 2y + 4 = -12
x . ( y + 2 ) + 2 . ( y + 2 ) = -12
( x + 2 ) . ( y + 2 ) = -12
Lập bảng ta có :
x+2 | 1 | -1 | -2 | -6 | -4 | -3 |
y+2 | -12 | 12 | 6 | 2 | 3 | 4 |
x | -1 | -3 | -4 | -8 | -6 | -5 |
y | -14 | 10 | 4 | 0 | 1 | 2 |
Ta có : (x - 1).(y + 2) = 7
=> (x - 1) và y + 2 thuộc Ư(7) = {-7;-1;1;7}
Ta có bảng :
x - 1 | -7 | -1 | 1 | 7 |
y + 2 | -1 | -7 | 7 | 1 |
x | -6 | 0 | 2 | 8 |
y | -3 | -9 | 5 | -1 |
Vậy có 4 cặp x;y thoả mãn : (-6,-3) ; (0 , -9) ; (2 , 5) ; (8, -1)
1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)
(Bất đẳng thức này a;b > 0 mới dùng được)
\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)