K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

* Dạng toán về phép chia đa thức Bài 9.Làm phép chia: a. 3x3y2: x2 b. (x5+ 4x3–6x2) : 4x2 c.(x3–8) : (x2+ 2x + 4) d. (3x2–6x): (2 –x) e.(x3+ 2x2–2x –1) : (x2+ 3x + 1) Bài 10: Làm tính chia 1. (x3–3x2+ x –3) : (x –3) 2. (2x4–5x2+ x3–3 –3x) : (x2–3) 3. (x –y –z)5: (x –y –z)3 4. (x2+ 2x + x2–4) : (x + 2) 5. (2x3+ 5x2–2x + 3) : (2x2–x + 1) 6. (2x3 –5x2+ 6x –15) : (2x –5) Bài 11: 1. Tìm n để đa thức x4–x3 + 6x2–x + n chia hết cho đa thức x2–x + 5 2. Tìm n để đa thức...
Đọc tiếp

* Dạng toán về phép chia đa thức

Bài 9.Làm phép chia:

a. 3x3y2: x2 b. (x5+ 4x3–6x2) : 4x2 c.(x3–8) : (x2+ 2x + 4) d. (3x2–6x): (2 –x) e.(x3+ 2x2–2x –1) : (x2+ 3x + 1)

Bài 10: Làm tính chia

1. (x3–3x2+ x –3) : (x –3) 2. (2x4–5x2+ x3–3 –3x) : (x2–3) 3. (x –y –z)5: (x –y –z)3 4. (x2+ 2x + x2–4) : (x + 2) 5. (2x3+ 5x2–2x + 3) : (2x2–x + 1) 6. (2x3 –5x2+ 6x –15) : (2x –5)

Bài 11:

1. Tìm n để đa thức x4–x3 + 6x2–x + n chia hết cho đa thức x2–x + 5

2. Tìm n để đa thức 3x3+ 10x2–5 + n chia hết cho đa thức 3x + 1

3*. Tìm tất cả các số nguyên n để 2n2+ n –7 chia hết cho n –2.

Bài 12: Tìm giá trị nhỏ nhất của biểu thức

1. A = x2–6x + 11 2. B = x2–20x + 101 3. C = x2–4xy + 5y2+ 10x –22y + 28

Bài 13: Tìm giá trị lớn nhất của biểu thức

1. A = 4x –x2+ 3 2. B = –x2+ 6x –11

Bài 14: CMR

1. a2(a + 1) + 2a(a + 1) chia hết cho 6 với a là số nguyên
2. a(2a –3) –2a(a + 1) chia hết cho 5 với a là số nguyên

3. x2+ 2x + 2 > 0 với mọi x 4. x2–x + 1 > 0 với mọi x 5. –x2+ 4x –5 < 0 với mọi x

các bn lm nhanh nhanh giùm mk,mk đang cần gấp.Thank các bn nhìu

1

Bài 13:

1: \(A=-x^2+4x+3\)

\(=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)\)

\(=-\left(x-2\right)^2+7\le7\)

Dấu '=' xảy ra khi x=2

2: \(B=-\left(x^2-6x+11\right)\)

\(=-\left(x-3\right)^2-2\le-2\)

Dấu '=' xảy ra khi x=3

10 tháng 12 2020

a) \(\left(x^5+4x^3-6x^2\right):4x^2\)

\(=\left(x^5:4x^2\right)+\left(4x^3:4x^2\right)+\left(-6x^2:4x^2\right)\)

\(=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)

b)  x^3 + x^2 - 12 x-2 x^3 - 2x^2 3x^2 - 12 3x^2 - 6x 6x - 12 x^2+3x+6 6x - 12 0

Vậy \(\left(x^3+x^2-12\right):\left(x-2\right)=x^2+3x+6\)

c) (-2x5 : 2x2) + (3x2 : 2x2) + (-4x^3 : 2x^2)

\(-x^3+\dfrac{3}{2}-2x\)

d) \(\left(x^3-64\right):\left(x^2+4x+16\right)\)

\(=\left(x-4\right)\left(x^2+4x+16\right):\left(x^2+4x+16\right)\)

\(=x-4\)

(dùng hẳng đẳng thức thứ 7)

Bài 2 :

a) 3x(x - 2) - 5x(1 - x) - 8(x2 - 3)

= 3x2 - 6x - 5x + 5x2 - 8x2 + 24

= (3x2 + 5x2 - 8x2) + (-6x - 5x) + 24 

= -11x + 24

b) (x - y)(x2 + xy + y2) + 2y3

= x3 - y3 + 2y3

= x3 + y3 

c) (x - y)2 + (x + y)2 - 2(x - y)(x + y)

= (x - y)2 - 2(x - y)(x + y) + (x + y)2

= [(x - y) + x + y)2 = [x - y + x + y] = (2x)2 = 4x2

 

18 tháng 10 2021

Bài 1 :

a]=  \(\frac{1}{4}\)x3 + x - \(\frac{3}{2}\).

b] => [x3 + x2 -12 ] = [ x2 +3 ][x-2] + [-6]

c]= -x3 -2x +\(\frac{3}{2}\).

d] = [ x3 - 64 ]  = [ x2 + 4x + 16][ x- 4].

22 tháng 12 2021

b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)

\(=2x^2-3x+1\)

29 tháng 10 2021

Bài 1:

Ta có: \(5x^3-3x^2+2x+a⋮x+1\)

\(\Leftrightarrow5x^3+5x^2-8x^2-8x+10x+10+a-10⋮x+1\)

\(\Leftrightarrow a-10=0\)

hay a=10

Bài 1: Thực hiện phép tính:          a) 2x.(3x2 – 5x + 3)                                 b) (-2x-1).( x2 + 5x – 3 ) – (x-1)3c) (2x – y).(4x2 + 2xy + y2)            d) (6x5y2 – 9x4y3 + 15x3y4) : 3x3y2     e) (x3 – 3x2 + x – 3) : (x – 3)Bài 2: Tìm x, biết:a) 5x(x – 1) = 10 (x – 1);                    b) 2(x + 5) – x2 – 5x = 0;        c) x3 - x = 0;                                               d) (2x – 1)2 – (4x – 3)2 = 0               e) (5x + 3)(x – 4) – (x – 5)x = (2x – 5)(5+2x )Bài 3:...
Đọc tiếp

Bài 1: Thực hiện phép tính:

          a) 2x.(3x2 – 5x + 3)                                 b) (-2x-1).( x2 + 5x – 3 ) – (x-1)3

c) (2x – y).(4x2 + 2xy + y2)            d) (6x5y2 – 9x4y3 + 15x3y4) : 3x3y2     

e) (x3 – 3x2 + x – 3) : (x – 3)

Bài 2: Tìm x, biết:

a) 5x(x – 1) = 10 (x – 1);                    b) 2(x + 5) – x2 – 5x = 0;        

c) x3 - x = 0;                                               d) (2x – 1)2 – (4x – 3)2 = 0               

e) (5x + 3)(x – 4) – (x – 5)x = (2x – 5)(5+2x )

Bài 3: Chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến.

a) x(3x + 12) – (7x – 20) + x2(2x – 3) – x(2x2 + 5).

b) 3(2x – 1) – 5(x – 3) + 6(3x – 4) – 19x.

Bài 4: Phân tích đa thức thành nhân tử.

          a) 10x(x – y) – 8(y – x)                      b) (3x + 1)2 – (2x + 1)2  

c) - 5x2 + 10xy – 5y2 + 20z2                   d) 4x2 – 4x +4 – y2                              

e) 2x2 - 9xy – 5y2                                             f) x3 – 4x2 + 4 x – xy2

Bài 5: Tìm giá trị nhỏ nhất của biểu thức

a) A = 9x2 – 6x + 11          b) B = 4x2 – 20x + 101 

Bài 6: Tìm giá trị lớn nhất của biểu thức   

                   a) A = x – x2                  b) B = – x2 + 6x – 11

1
22 tháng 8 2022

a) 2x.(3x2 – 5x + 3)        

=2x3-10x2+6x                                                                       

b(-2x-1).( x2 + 5x – 3 ) – (x-1)3

=-2x- 10x2 + 6x - x2 - 5x + 3 - x3 + 3x2 - 3x + 1

= -3x3 - 8x2 - 2x + 4

   d) (6x5y2 – 9x4y+ 15x3y4) : 3x3y

=2x2-3xy+5y2

 

 

 

19 tháng 12 2021

Bài 1: 

a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)

\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)

13 tháng 11 2021

Bài 1:

\(a,6x^2-15x^3y\\ b,=-\dfrac{2}{3}x^2y^3+\dfrac{2}{3}x^4y-\dfrac{8}{3}xy\)

Bài 2:

\(a,=20x^3-10x^2+5x-20x^3+10x^2+4x=9x\\ b,=3x^2-6x-5x+5x^2-8x^2+24=24-11x\\ c,=x^5+x^3-2x^3-2x=x^5-x^3-2x\)

13 tháng 11 2021

câu d của bài 2 là của bài 1 nha mình để nhầm chỗ huhu

 

23 tháng 11 2016

dài thế ai trả lời đc hả ?

23 tháng 11 2016

tu lam di luoi vua thoi

18 tháng 7 2021

a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

b) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

c) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2-x+9\right)\)

d) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)\left[a^3+a^2-2a^2+2\right]=a^2\left(a+1\right)\left[a^2\left(a+1\right)-2\left(a-1\right)\left(a+1\right)\right]=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)

a) Ta có: \(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

b) Ta có: \(x^3+2x^2+2x+1\)

\(=\left(x^3+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)