tìm các số x,y thỏa mãn đẳng thức:
3x2 + 3y2 + 4xy + 2x - 2y +2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x^2+3y^2+4xy-2x+2y+2=0
=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0
=>x=1 và y=-1
M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1
Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(2\left(x+y\right)^2\ge0\forall x,y\)
Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)
Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được:
\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)
\(=0^{2016}+1^{2017}+0^{2018}=1\)
Vậy: M=1
1) x2 + 7y2 - 4xy - 2x - 2y + 4 = 0
\(\Leftrightarrow\)[ x2 - 2x.( 2y + 1 ) + 4y2 + 4y +1 ] - 4y2 - 4y - 1 + 7y2 - 2y +4 = 0
\(\Leftrightarrow\) [ x2 - 2x.( 2y +1 ) + ( 2y +1 )2 ] + 3y2 - 6y +3 = 0
\(\Leftrightarrow\) ( x - 2y - 1 )2 + 3.( y2 - 2y + 1 ) = 0
\(\Leftrightarrow\)( x - 2y - 1 )2 + 3.( y - 1 )2 = 0
\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2y-1\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-2y-1=0\\y-1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=2y+1\\y=1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=3\\y=1\end{cases}}\)
Vậy x = 3 , y = 1 thì x2 + 7y2 - 4xy - 2x - 2y + 4 = 0
2) 11x2 + y2 - 6xy - 14x + 2y +9 = 0
\(\Leftrightarrow\)[ y2 - 2y.( 3x - 1 ) + 9x2 - 6x +1 ] + 2x2 - 8x + 8 = 0
\(\Leftrightarrow\)[ y2 - 2y.( 3x - 1 ) + ( 3x - 1 )2 ] + 2.( x2 - 4x + 4 ) = 0
\(\Leftrightarrow\)( y - 3x + 1 )2 + 2.( x - 2 )2 = 0
\(\Leftrightarrow\)\(\hept{\begin{cases}\left(y-3x+1\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y-3x+1=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y=3x-1\\x=2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y=5\\x=2\end{cases}}\)
Vậy x = 2 , y = 5 thì 11x2 + y2 - 6xy - 14x + 2y + 9 = 0
Toán lớp 0 ????? \(\text{ 🤔 }\text{ 🤔 }\text{ 🤔 }\text{ 😅 }\text{ 😅 }\text{ 😅 }\)
\(8x^2+14xy+8y^2+2x-2y+2=0\)
\(\Leftrightarrow7\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow7\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
Do \(\left\{{}\begin{matrix}7\left(x+y\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\) ; \(\forall x;y\)
Nên \(7\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2\ge0;\forall x;y\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
ta có : \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow2x^2+4xy+2y^2+x^2+2x+1+y^2-2y+1=0\)
\(\Leftrightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
ta có : \(2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2\ge0\forall x;y\)
vì vậy : \(2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=-1\\y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\) vậy \(x=-1;y=1\)