K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

a) \(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2008}\)

b) Ta có: \(2A=2+2^2+2^3+2^4+...+2^{2008}\)

\(\Rightarrow A=2A-A=2+2^2+2^3+2^4+...+2^{2008}-1-2-2^2-...-2^{2007}=2^{2008}-1\)

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Lời giải:
a.

$A=1+2^1+2^2+2^3+....+2^{2007}$

$2A=1.2+2^1.2+2^2.2+2^3.2+....+2^{2007}.2$

$2A=2+2^2+2^3+2^4+....+2^{2008}$

b.

$A=2A-A=(2+2^2+2^3+2^4+...+2^{2008})-(1+2+2^2+...+2^{2007})$

$=2^{2008}-1$ (đpcm)

P/s: Lần sau bạn chú ý viết đề bằng công thức toán.