K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

\(A=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)

\(A=\sqrt{8-2\cdot\sqrt{3}\cdot\sqrt{5}}-\sqrt{8+2\cdot\sqrt{3}\cdot\sqrt{5}}\)

\(A=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)

\(A=\left|\sqrt{5}-\sqrt{3}\right|-\left|\sqrt{5}+\sqrt{3}\right|\)

\(A=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)

\(A=-2\sqrt{3}\)

5 tháng 1 2018

Cách khác:

\(A^2=\left(\sqrt{8-2\sqrt{15}}\right)^2-2.\sqrt{8-2\sqrt{15}}.\sqrt{8+2\sqrt{15}}+\left(\sqrt{8+2\sqrt{15}}\right)^2\)

\(A^2=8-2\sqrt{15}-2.\sqrt{8^2-\left(2\sqrt{15}\right)^2}+8+2\sqrt{15}\)

\(A^2=16-2.2=12\)\(\Rightarrow\left[{}\begin{matrix}A=2\sqrt{3}\\A=-2\sqrt{3}\end{matrix}\right.\)

\(\sqrt{8-2\sqrt{15}}< \sqrt{8+2\sqrt{15}}\) nên A<0 nên A=\(-2\sqrt{3}\)

21 tháng 5 2019

A=\(\sqrt{5-2\sqrt{3}.\sqrt{5}+3}-\sqrt{5+2\sqrt{5}.\sqrt{3}+3}\)

A=\(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)

A=\(\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)

A=\(-2\sqrt{3}\)

22 tháng 8 2020

\(A=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)

\(A=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)

\(A=\left|\sqrt{5}-\sqrt{3}\right|-\sqrt{5}-\sqrt{3}\)

\(A=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)

\(A=-2\sqrt{3}\)

20 tháng 6 2018

\(A=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)

\(=\sqrt{3-2\sqrt{3.5}+5}-\sqrt{3+2\sqrt{3.5}+5}\)

\(=\sqrt{\left(3-5\right)^2}-\sqrt{\left(3+5\right)^2}\)

\(=|3-5|-|3+5|\)

\(=-3+5-3-5\)

\(=-6 \)

9 tháng 11 2021

\(a,=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=\sqrt{2}\\ b,=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\\ c,=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{2}\)

18 tháng 5 2019

\(A=\sqrt{4+\sqrt{7}}-\sqrt{4+\sqrt{7}}\Leftrightarrow\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(\Leftrightarrow\sqrt{2}A=\sqrt{\sqrt{7}^2+2\sqrt{7}+1}-\sqrt{\sqrt{7}^2+2\sqrt{7}+1}\)

\(\Leftrightarrow\sqrt{2}A=\sqrt{7}+1-\sqrt{7}-1=0\)

\(\Leftrightarrow A=0\)

24 tháng 9 2023

a)

\(\left(3-\sqrt{15}\right)\sqrt{4+\sqrt{15}}\\ =\left(3-\sqrt{15}\right)\cdot\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}\\ =\left(3-\sqrt{15}\right)\cdot\dfrac{\sqrt{5+2\sqrt{15}+3}}{\sqrt{2}}\\ =\left(3-\sqrt{15}\right)\cdot\dfrac{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}}{\sqrt{2}}\\ =\left(\sqrt{9}-\sqrt{15}\right)\cdot\dfrac{\left|\sqrt{5}+\sqrt{3}\right|}{\sqrt{2}}\)

\(=\sqrt{3}\left(\sqrt{3}-\sqrt{5}\right)\cdot\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}\) (vì \(\sqrt{5}+\sqrt{3}>0\))

\(=\sqrt{3}\cdot\dfrac{3-5}{\sqrt{2}}\\ =\sqrt{3}\cdot\dfrac{-2}{\sqrt{2}}\\ =\sqrt{3}\cdot\dfrac{-\sqrt{4}}{\sqrt{2}}\\ =-\sqrt{6}\)

b)

\(\sqrt{29-12\sqrt{5}}-\sqrt{24-8\sqrt{5}}\\ =\sqrt{20-2\cdot3\cdot2\sqrt{5}+9}-\sqrt{20-2\cdot2\cdot2\sqrt{5}+4}\\ =\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}-2\right)^2}\\ =\left|2\sqrt{5}-3\right|-\left|2\sqrt{5}-2\right|\)

\(=2\sqrt{5}-3-\left(2\sqrt{5}-2\right)\) (vì \(2\sqrt{5}-3>0;2\sqrt{5}-2>0\))

\(=2\sqrt{5}-3-2\sqrt{5}+2\\ =-1\)

\(\frac{\sqrt{8-\sqrt{15}}}{\sqrt{30}-\sqrt{2}}=\frac{\sqrt{2}\sqrt{8-\sqrt{15}}}{\sqrt{2}\left(\sqrt{15}.\sqrt{2}-\sqrt{2}\right)}=\frac{\sqrt{16-2\sqrt{15}}}{\sqrt{2}.\sqrt{2}\left(\sqrt{15}-1\right)}\)

\(=\frac{\sqrt{15-2\sqrt{15}+1}}{2\left(\sqrt{15}-1\right)}=\frac{\sqrt{\left(\sqrt{15}-1\right)^2}}{2\left(\sqrt{15}-1\right)}=\frac{\sqrt{15}-1}{2\left(\sqrt{15}-1\right)}=\frac{1}{2}\)

28 tháng 5 2021

a) (a+1)(ba+1)(a+1)(ba+1).
b) (xy)(x+y)(x−y)(x+y).

19 tháng 6 2021

\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\left(2+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{2-1}=2\sqrt{2}-2+2-\sqrt{2}=\sqrt{2}\)

\(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\)

\(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{2}\)

\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{\left(a-\sqrt{a}\right)\left(1+\sqrt{a}\right)}{1-a}=\dfrac{a+a\sqrt{a}-\sqrt{a}-a}{1-a}=\dfrac{\sqrt{a}\left(a-1\right)}{1-a}=-\sqrt{a}\)

\(\dfrac{p-2\sqrt{p}}{\sqrt{p}-2}=\dfrac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)

15 tháng 7 2019

\(\sqrt{\left(5+2\sqrt{6}\right)}+\sqrt{8-2\sqrt{15}}\)

\(=\sqrt{\left(2+2.\sqrt{2}.\sqrt{3}+3\right)}+\sqrt{3-2\sqrt{3}.\sqrt{5}+5}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}\)

\(=\sqrt{2}+\sqrt{3}+\sqrt{3}+\sqrt{5}\)

\(=\sqrt{2}+2\sqrt{3}+\sqrt{5}\)

22 tháng 10 2021

4: \(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)

\(=\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}\)

\(=2\sqrt{3}\)

22 tháng 10 2021

4) \(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)

   \(=\sqrt{5}+\sqrt{3}-\left(\sqrt{5}-\sqrt{3}\right)=2\sqrt{3}\)

5) \(\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}\)

   \(=\sqrt{2}+\sqrt{3}+\sqrt{5}-\sqrt{3}=\sqrt{2}+\sqrt{5}\)