tìm giá trị nhỏ nhất
Q= (x+y-3)^4+(x-2y)^2+2012
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(-x+y-3\right)^4\ge0\)
\(\left(x-2y\right)^2\ge0\)
\(\Rightarrow P=\left(-x+y-3\right)^4+\left(x-2y\right)^2+2012\ge2012\)
Dấu " = " xảy ra khi \(\left(-x+y-3\right)^4=0\)vs \(\left(x-2y\right)^2=0\)
nên : * \(-x+y-3=0\)và \(x-2y=0\)
\(\Rightarrow y-x=3\)vs \(x=2y\)
\(\Rightarrow x=y-3\)(1) vs \(x=2y\)(2)
Từ (1) vs (2), ta có : \(y-3=2y\)
\(\Rightarrow y=3\)
\(\Rightarrow x=y-3=3-3=0\)
\(\Rightarrow Min\) \(P=2012\) khi x=0 vs y=3.
P >= 0
Dấu "=" xảy ra <=> x-2y=0 và y-2012=0
<=> x=4024 và y=2012
Vậy GTNN của P = 0 <=> x = 4024 và y = 2012
k mk nha
P >= 0
Dấu "=" xảy ra <=> x-2y=0 và y-2012=0
<=> x=4024 và y=2012
Vậy GTNN của P = 0 <=> x = 4024 và y = 2012
k mk nha
`A=x^4-6x^3+18x^2-6xy+y^2+2012`
`=x^4-6x^3+9x^2+9x^2-6xy+y^2+2012`
`=(x^2-x)^2+(3x-y)^2+2012>=2012`
Dấu "=" xảy ra khi:
$\begin{cases}x=x^2\\y=3x\end{cases}$
`<=>` $\left[ \begin{array}{l}\begin{cases}x=0\\y=3x=0\\\end{cases}\\\begin{cases}x=1\\y=3x=3\\\end{cases}\end{array} \right.$
Vậy `min_A=2012<=>` $\left[ \begin{array}{l}x=y=0\\\begin{cases}x=1\\y=3\end{cases}\end{array} \right.$
Với \(\forall x;y\) ta có :
\(\left\{{}\begin{matrix}\left(x+y-3\right)^4\ge0\\\left(x-2y\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x+y-3\right)^4+\left(x-2y\right)^2\ge0\)
\(\Leftrightarrow\left(x+y-3\right)^4+\left(x-2y\right)^2+2012\ge2012\)
\(\Leftrightarrow Q\ge2012\)
Dấu "=" xảy ra khi :
\(\left\{{}\begin{matrix}\left(x+y-3\right)^4=0\\\left(x-2y\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y-3=0\\x-2y=0\end{matrix}\right.\)