GIÚP MÌNH VỚI MỌI NGƯỜI ƠI!! mình cần gấp lắm luôn í
(mình đăng lại 3 lần luôn rồi huhu)
Cho a,b là các số hữu tỉ thoả mãn: a\(\sqrt{2}\)+ b\(\sqrt{3}\)=0
cmr: a=b=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{a}+\sqrt{b}=m\Leftrightarrow m-\sqrt{a}=\sqrt{b}\Rightarrow m^2-2m\sqrt{a}+a=b\)
\(\Leftrightarrow\sqrt{a}=\frac{m^2+a-b}{2m}\)là số hữu tỉ.
Tương tự cũng suy ra \(\sqrt{b}\)là số hữu tỉ.
1)
Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)
Dấu "=" xảy ra khi a=b=c
2)
\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)
Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)
\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)
quá đơn giản
cho 5 k giải cho
(mình trong đội tuyển toán đó nhe nên làm theo đi)
Đáp án D
Hướng dẫn cách giải bằng máy tính cầm tay:
Gán các giá trị :
Sử dụng chức năng giải hệ phương trình bậc nhất 2 ẩn
{Aa+Bb=Ca+b=dAa+Bb=Ca+b=dvới d là giá trị các đáp án
Giải hpt ta được:⎧⎨⎩a=13b=16⇒a+b=12
bạn ơi nếu đã trả lời thì trả lời tử tế giúp mình với chứ ạ