K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2017

A B C M N O MNB NMC

a/ Vì \(\Delta ABC\)\(AB=AC\) nên \(\Delta ABC\) cân tại \(\widehat{A}\) \(\Rightarrow\widehat{B}=\widehat{C}\) ( hai góc đáy của tam giác cân )

Xét \(\Delta BCM\)\(\Delta CBN\) có:

\(BM=CN\left(gt\right)\)

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

\(BC\) cạnh chung

Do đó \(\Delta BCM=\Delta CBN\left(c.g.c\right)\)

\(\Rightarrow BN=CM\) ( cạnh tương ứng )

27 tháng 12 2017

b)

AB=AC

BM=CN

=> AM=AN

=> tg AMN cân tại A

\(\Rightarrow\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)

TT : \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\\ \Rightarrow\widehat{ABC}=\widehat{AMN}\\\)

=> MN // BC

8 tháng 4 2015

a.xét tam giác BAN và tam giác CAM ta có:
AM=AN (GT)
AB=AC ( tam giác ABC cân tại A)
A là góc chung
suy ra tam giác BÀN= tam giác CẤM (c.g.c)

b. xét tam giác OBM và tam giác OCN ta có:
góc OBM=góc OCN (2 góc tương ứng)
BM=CN (AB=AC mà AM=AN)
Góc OMB= góc ONC (góc ANB= góc AMC mà AMC+OMB=ANB+ONC)
suy ra tam giác OMB= ta giác ONC (g.c.g)

c.xét tam giác AMO và tam giác ANO ta có:
AM=AN(GT)
góc AMO= góc ANO ( tam giác AMC= tam giác ANB)
OM=ON (tam giác MOB= tam giác NOC)
suy ra tam giác AMO=tam giác ANO (c.g.c)
suy ra góc BAO= góc CAO (2 góc tương ứng). suy ra Ao là p/g của góc A


gọi giao điểm của BC và AO là I.
Xét tam giác ABI và tam giác ACI ta có:
AB=AC (tam giác ABC cân tại A)
góc BAI= góc CAI (CMT)
AI là cạnh chung
suy ra tam giác ABI= tam giác ACI( c.g.c)
suy ra góc AIB= góc AIC (2 góc tương ứng) mà AIB+AIC= 180 độ nên AIB=AIC=180/2=90 độ suy ra AI vuông góc vs Bc. suy ra AO là đường cao của tam giác ABC.

d. khi M,N lần lượt là trung điểm của AB và AC thì BM=MN=NC.

6 tháng 7 2017

a.xét tam giác BAN và tam giác CAM ta có:
AM=AN (GT)
AB=AC ( tam giác ABC cân tại A)
A là góc chung
suy ra tam giác BÀN= tam giác CẤM (c.g.c)

b. xét tam giác OBM và tam giác OCN ta có:
góc OBM=góc OCN (2 góc tương ứng)
BM=CN (AB=AC mà AM=AN)
Góc OMB= góc ONC (góc ANB= góc AMC mà AMC+OMB=ANB+ONC)
suy ra tam giác OMB= ta giác ONC (g.c.g)

c.xét tam giác AMO và tam giác ANO ta có:
AM=AN(GT)
góc AMO= góc ANO ( tam giác AMC= tam giác ANB)
OM=ON (tam giác MOB= tam giác NOC)
suy ra tam giác AMO=tam giác ANO (c.g.c)
suy ra góc BAO= góc CAO (2 góc tương ứng). suy ra Ao là p/g của góc A


gọi giao điểm của BC và AO là I.
Xét tam giác ABI và tam giác ACI ta có:
AB=AC (tam giác ABC cân tại A)
góc BAI= góc CAI (CMT)
AI là cạnh chung
suy ra tam giác ABI= tam giác ACI( c.g.c)
suy ra góc AIB= góc AIC (2 góc tương ứng) mà AIB+AIC= 180 độ nên AIB=AIC=180/2=90 độ suy ra AI vuông góc vs Bc. suy ra AO là đường cao của tam giác ABC.

d. khi M,N lần lượt là trung điểm của AB và AC thì BM=MN=NC.

16 tháng 4 2022

-Bài khó.

-Bài này mình xem cách giải của bài khá tương đồng với bài này (do GV mình giải).

-OI cắt AC tại E, AD cắt CM tại F, qua M kẻ đường thẳng song song với AC cắt BN tại G.

\(\dfrac{AN}{NC}=\dfrac{AN}{MG}.\dfrac{MG}{NC}=\dfrac{AB}{BM}.\dfrac{OM}{OC}\)

\(\Rightarrow\dfrac{OM}{OC}=\dfrac{BM}{AB}.\dfrac{AN}{NC}=\dfrac{NC}{AB}.\dfrac{AN}{NC}=\dfrac{AN}{AB}\)

\(\Rightarrow\dfrac{CM}{OC}=\dfrac{AN+AB}{AB}\Rightarrow\dfrac{OC}{CM}=\dfrac{AB}{AN+AB}\)

\(\dfrac{MF}{CF}=\dfrac{AM}{AC}\Rightarrow\dfrac{CM}{CF}=\dfrac{AM+AC}{AC}=\dfrac{AB-BM+AN+NC}{AC}=\dfrac{AB+AN}{AC}\)

\(\Rightarrow\dfrac{OC}{CM}.\dfrac{CM}{CF}=\dfrac{AB}{AN+AB}.\dfrac{AN+AB}{AC}=\dfrac{AB}{AC}\)

\(\Rightarrow\dfrac{OC}{CF}=\dfrac{AB}{AC}\Rightarrow\dfrac{CE}{AC}=\dfrac{AB}{AC}\Rightarrow CE=AB\)

\(\dfrac{IC}{DC}=\dfrac{CE}{AC}=\dfrac{AB}{AC}=\dfrac{AD}{DC}\Rightarrow IC=AD\)

\(\Rightarrow IC+ID=BD+ID\Rightarrow CD=BI\)

1 tháng 3 2021

a) Chứng minh CM=BN :AM = CN (gt)AC = BC ( cạnh tam giác đều)CAM^ = BCN^ = 60*=> Δ ACM = Δ CBN (c.g.c)=> CM = BN

b) Chứng minh góc BOC không đổi khi M và N di động trên hai cạnh AB và AC thỏa mãn AM=CNΔ ACM = Δ CBN => ACM^ = CBN^ => ABN^ = BCM^=> CBN^ + BCM^ = CBN^ + ABN^ = ABC^ = 60*=> BOC^ = 180* - (CBN^ + BCM^) = 180* - 60* = 120* không đổi

1 tháng 3 2021

Bớt buff đi bạn ơi :)

17 tháng 1 2018

Bài rất hay !

  A B C M E C

a) Xét tam giác ABM và tam giác ANM có

\(\widehat{BAM}\) = \(\widehat{NAM}\) (Vì AM là phân giác góc A)

AB = AN (gt)

Chung AM

=> Tam giác ABM = Tam giác ANM (c.g.c)

b) Ta có \(\widehat{ABM}\)+\(\widehat{EBE}\) = 180 độ

            \(\widehat{ANM}\) + \(\widehat{CNM}\) = 180 độ

mà \(\widehat{ABM}\)=\(\widehat{ANM}\)(Vì tam giác ABM = Tam giác ANM)

=> \(\widehat{EBE}\)\(\widehat{CNM}\)

Lại có BM = NM (Vì tam giác ABM = Tam giác ANM)

Xét tam giác BME và Tam giác NMC có

\(\widehat{EBE}\) =\(\widehat{CNM}\)

BM = NM

\(\widehat{BME}\) = \(\widehat{NMC}\) (Đối đỉnh)

=> Tam giác BME  = Tam giác NMC (c.g.c)

=> BE = NC (2 cạnh tương ứng)

c) Xét tam giác ABN

Có AB = AN (gt) => Tam giác ABN cân

=> Đường phân giác cũng là đường cao => AM vuông góc với BN (1)

Ta có BE = NC (cmt)

AB = AN

mà AE = AB+BE, AC = AN + CN

=> AE = AC

=> Tam giác AEC cân

=> đường phân giác cũng là đường cao => AM Vuông góc với EC (2)

Từ (1), (2) => BN // EC (Cùng vuông góc với AM) - đpcm

17 tháng 1 2018

Mình vẽ nhầm N thành C trên hình. bạn sửa lại dùm nhé ^^

4 tháng 4 2020

A B C M N I K

a) Ta có: MN // BC(gt) => \(\frac{AM}{AB}=\frac{AN}{AC}\)(theo định lí Ta - lét)

=> \(AN=\frac{AM}{AB}.AC=\frac{2,25}{6}\cdot8=3\)(cm)

 => \(CN=AC-AN=8-3=5\)

b) Ta có: MK // BI (gt) => \(\frac{MK}{BI}=\frac{AK}{AI}\)(theo định lí Ta - lét)

       NK // IC (gt) => \(\frac{KN}{IC}=\frac{AK}{AI}\)(theo định lí Ta - lét)

=> \(\frac{MK}{BI}=\frac{KN}{IC}\) mà BI = IC (gt)

=> MK = KN => K là trung điểm của MN

c) Do BN là tia p/giác của góc ABC => \(\frac{AB}{BC}=\frac{AN}{NC}\)(t/c đường p/giác của t/giác)

=> \(BC=AB:\frac{AN}{NC}=6:\frac{3}{5}=10\)(cm)

Ta có: BC2 = 102 = 100

   AB2 + AC2 = 62  + 82 = 100

=> BC2 = AB2 + AC2 => t/giác ABC vuông tại A (theo định lí Pi - ta - go đảo)

=> SABC = AB.AC/2 = 6.8/2 = 24 (cm2)