CMR: b) Biểu thức B=\(\sqrt{1+2014^2+\dfrac{2014^2}{2015^2}}+\dfrac{2014}{2015}\) có giá trị là một số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2014^2\left(\frac{1}{2014^2}+1+\frac{1}{2015^2}\right)}-\frac{2014}{2015}=2014\sqrt{\left(1+\frac{1}{2014}+\frac{1}{2015}\right)^2}-\frac{2014}{2015}\)
\(=2014\left(1+\frac{1}{2014}+\frac{1}{2015}\right)-\frac{2014}{2015}=2015\)
\(B=\sqrt{2014^2\left(1+\frac{1}{2014}-\frac{1}{2015}\right)^2}+\frac{2014}{2015}=2015\)
Giải:
\(\dfrac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}\) \(=\dfrac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\)
\(=\dfrac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}=\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\)
Áp dụng vào biểu thức ta có:
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}\) \(+...+\dfrac{1}{2015\sqrt{2014}+2014\sqrt{2015}}\)
\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2014}}-\dfrac{1}{\sqrt{2015}}\)
\(=1-\dfrac{1}{\sqrt{2015}}\)
b,\(B=\sqrt{1+2014^2+\dfrac{2014^2}{2015^2}}+\dfrac{2014}{2015}\)
Ta có :\(\left(2014+1\right)^2=2014^2+1+2.2014\)
\(\Rightarrow2014^2+1=2015^2-2.2014\)
\(\Rightarrow B=\sqrt{2015^2-2.2014+\left(\dfrac{2014}{2015}\right)^2}+\dfrac{2014}{2015}\)
\(=\sqrt{\left(2015-\dfrac{2014}{2015}\right)^2}+\dfrac{2014}{2015}\)
\(=2015-\dfrac{2014}{2015}+\dfrac{2014}{2015}\)
\(=2015\)
Vậy B=2015
\(C=\dfrac{2014\left(2015^2+2016\right)-2016\left(2015^2-2014\right)}{2014\left(2013^2-2012\right)-2012\left(2013^2+2014\right)}\)
\(=\dfrac{2.2014.2016+2014.2015^2-2016.2015^2}{2014.2013^2-2012.2013^2-2.2012.2014}\)
\(=\dfrac{2.\left(2015+1\right)\left(2015-1\right)-2.2015^2}{2.2013^2-2.\left(2013+1\right)\left(2013-1\right)}\)
\(=\dfrac{2.\left(2015^2-1\right)-2.2015^2}{2.2013^2-2.\left(2013^2-1\right)}=\dfrac{-2}{2}=-1\)
a,a=b+1
suy ra a-b=1 suy ra(\(\sqrt{a}+\sqrt{b}\))(\(\sqrt{a}-\sqrt{b}\))=1
suy ra \(\sqrt{a}-\sqrt{b}\)=\(\frac{1}{\sqrt{a}+\sqrt{b}}\)(1)
vì a=b+1 suy ra a>b suy ra \(\sqrt{a}>\sqrt{b}\)suy ra \(\sqrt{a}+\sqrt{b}>2\sqrt{b}\)
suy ra \(\frac{1}{\sqrt{a}+\sqrt{b}}< \frac{1}{2\sqrt{b}}\)(2)
từ (1) ,(2) suy ra\(\sqrt{a}-\sqrt{b}< \frac{1}{2\sqrt{b}}\)suy ra \(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)(*)
ta lại có b+1=c+2 suy ra b-c =1 suy ra\(\left(\sqrt{b}-\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)=1\)
suy ra \(\sqrt{b}-\sqrt{c}=\frac{1}{\sqrt{b}+\sqrt{c}}\)(3)
vì b>c suy ra \(\sqrt{b}>\sqrt{c}\) suy ra \(\sqrt{b}+\sqrt{c}>2\sqrt{c}\)
suy ra \(\frac{1}{\sqrt{b}+\sqrt{c}}< \frac{1}{2\sqrt{c}}\)(4)
Từ (3),(4) suy ra \(\sqrt{b}-\sqrt{c}< \frac{1}{2\sqrt{c}}\) suy ra\(2\left(\sqrt{b}+\sqrt{c}\right)< \frac{1}{\sqrt{c}}\)(**)
từ (*),(**) suy ra đccm
Ta có \(2015^2=\left(2014+1\right)^2=2014^2+2.2014+1\)
=> \(2014^2+1=2015^2-2.2014\)
=> \(B=\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\)
= \(\sqrt{2015^2-2.2014+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\)
= \(\sqrt{\left(2015-\frac{2014}{2015}\right)^2}+\frac{2014}{2015}\) = \(2015-\frac{2014}{2015}+\frac{2014}{2015}\)
= \(2015\) là số nguyên
=> đpcm
Đặt: n=2014
Ta có: \(1+n^2+\left(\frac{n}{n+1}\right)^2=\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}\)
\(=\frac{\left(n+1\right)^2+n^2\left(n^2+2n+2\right)}{\left(n+1\right)^2}=\frac{\left(n+1\right)^2+2n^2\left(n+1\right)+n^4}{\left(n+1\right)^2}\)
\(=\frac{\left(n^2+n+1\right)^2}{\left(n+1\right)^2}=\left(\frac{n\left(n+1\right)+1}{n+1}\right)^2=\left(n+\frac{1}{n+1}\right)^2\)
\(\Rightarrow\sqrt{1+n^2+\left(\frac{n}{n+1}\right)^2}=n+\frac{1}{n+1}\)
\(\Rightarrow B=2014+\frac{1}{2015}+\frac{2014}{2015}=2015\)
\(\text{Có }:\left(\dfrac{2015-2014}{2015+2014}\right)^2=\dfrac{\left(2015-2014\right)^2}{2015^2+2\cdot2015\cdot2014+2014^2}\\ \dfrac{2015^2-2014^2}{2015^2+2014^2}=\dfrac{\left(2015-2014\right)\left(2015+2014\right)}{2015^2+2014^2}\)
\(\text{Do }2015-2014< 2015+2014\\ \Rightarrow\left(2015-2014\right)^2< \left(2015+2014\right)\left(2015-2014\right)\\ \Rightarrow\dfrac{\left(2015-2014\right)^2}{2015^2+2\cdot2015\cdot2014+2014^2}< \dfrac{\left(2015+2014\right)\left(2015-2014\right)}{2015^2+2\cdot2015\cdot2014+2014^2}\)
\(\text{Mà }2015^2+2\cdot2015\cdot2014+2014^2>2015^2+2014^2\\ \Rightarrow\dfrac{\left(2015+2014\right)\left(2015-2014\right)}{2015^2+2\cdot2015\cdot2014+2014^2}< \dfrac{\left(2015+2014\right)\left(2015-2014\right)}{2015^2+2014^2}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\dfrac{\left(2015-2014\right)^2}{2015^2+2\cdot2015\cdot2014+2014^2}< \dfrac{\left(2015+2014\right)\left(2015-2014\right)}{2015^2+2014^2}\)
\(\Rightarrow\left(\dfrac{2015-2014}{\left(2015+2014\right)}\right)^2< \dfrac{2015^2-2014^2}{2015^2+2014^2}\)
A= 1+(\(\dfrac{1}{2014}\)+1)+(\(\dfrac{2}{2013}\)+1)+...+(\(\dfrac{2013}{2}\)+1)
= \(\dfrac{2015}{2015}\)+(\(\dfrac{1}{2014}\)+1)+(\(\dfrac{2}{2013}\)+1)+...+(\(\dfrac{2013}{2}\)+1)
= 2015.(\(\dfrac{1}{2015}\)+\(\dfrac{1}{2014}\)+\(\dfrac{1}{2013}\)+...+\(\dfrac{1}{2}\))=2015.B
\(\Rightarrow\) \(\dfrac{A}{B}\)=2015
Với \(\forall a\in N\left(a\ne0\right)\cdot\),ta có:\(\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\sqrt{\dfrac{\left(a^2+1\right)\left(a^2+2a+1\right)+a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\sqrt{\dfrac{\left(a^2+1\right)^2+2a\left(a^2+1\right)+a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\sqrt{\dfrac{\left(a^2+a+1\right)^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\dfrac{a^2+a+1}{a+1}+\dfrac{a}{a+1}=\dfrac{\left(a+1\right)^2}{a+1}=a+1\in Z\)(Vì a là số tự nhiên)
Thay a=2014 vào thì ta có: B=2014+1=2015 là số nguyên